Frederic Bost

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9340444/publications.pdf

Version: 2024-02-01

66911 81900 10,249 81 39 78 citations h-index g-index papers 98 98 98 19287 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
2	The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene, 2008, 27, 3576-3586.	5.9	775
3	Metformin, Independent of AMPK, Induces mTOR Inhibition and Cell-Cycle Arrest through REDD1. Cancer Research, 2011, 71, 4366-4372.	0.9	545
4	The role of MAPKs in adipocyte differentiation and obesity. Biochimie, 2005, 87, 51-56.	2.6	477
5	Targeting Cancer Cell Metabolism: The Combination of Metformin and 2-Deoxyglucose Induces p53-Dependent Apoptosis in Prostate Cancer Cells. Cancer Research, 2010, 70, 2465-2475.	0.9	465
6	Metformin in Cancer Therapy: A New Perspective for an Old Antidiabetic Drug?. Molecular Cancer Therapeutics, 2010, 9, 1092-1099.	4.1	444
7	Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight, 2017, 2, e87489.	5.0	304
8	The Extracellular Signal-Regulated Kinase Isoform ERK1 Is Specifically Required for In Vitro and In Vivo Adipogenesis. Diabetes, 2005, 54, 402-411.	0.6	285
9	Hypoxia Decreases Insulin Signaling Pathways in Adipocytes. Diabetes, 2009, 58, 95-103.	0.6	246
10	The Jun Kinase/Stress-activated Protein Kinase Pathway Functions to Regulate DNA Repair and Inhibition of the Pathway Sensitizes Tumor Cells to Cisplatin. Journal of Biological Chemistry, 1997, 272, 14041-14044.	3.4	197
11	Inter-alpha-trypsin inhibitor proteoglycan family. A group of proteins binding and stabilizing the extracellular matrix. FEBS Journal, 1998, 252, 339-346.	0.2	193
12	Molecular Determinants of AHPN (CD437)-Induced Growth Arrest and Apoptosis in Human Lung Cancer Cell Lines. Molecular and Cellular Biology, 1998, 18, 4719-4731.	2.3	165
13	Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage. Biochemical Journal, 2002, 361, 621-627.	3.7	163
14	Inhibition of p38MAPK Increases Adipogenesis From Embryonic to Adult Stages. Diabetes, 2006, 55, 281-289.	0.6	160
15	The JUN Kinase/Stress-activated Protein Kinase Pathway Is Required for Epidermal Growth Factor Stimulation of Growth of Human A549 Lung Carcinoma Cells. Journal of Biological Chemistry, 1997, 272, 33422-33429.	3.4	151
16	Sestrin2 integrates Akt and mTOR signaling to protect cells against energetic stress-induced death. Cell Death and Differentiation, 2013, 20, 611-619.	11.2	137
17	The Jun Kinase 2 Isoform Is Preferentially Required for Epidermal Growth Factor-Induced Transformation of Human A549 Lung Carcinoma Cells. Molecular and Cellular Biology, 1999, 19, 1938-1949.	2.3	135
18	Role ofÂMAPKs inÂdevelopment andÂdifferentiation: lessons from knockout mice. Biochimie, 2006, 88, 1091-1098.	2.6	133

#	Article	lF	Citations
19	Apelin and APJ regulation in adipose tissue and skeletal muscle of type 2 diabetic mice and humans. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E1161-E1169.	3.5	126
20	Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage. Biochemical Journal, 2002, 361, 621.	3.7	118
21	The combination of metformin and 2 deoxyglucose inhibits autophagy and induces AMPK-dependent apoptosis in prostate cancer cells. Autophagy, 2010, 6, 670-671.	9.1	98
22	Autophagy regulates fatty acid availability for oxidative phosphorylation through mitochondria-endoplasmic reticulum contact sites. Nature Communications, 2020, 11, 4056.	12.8	96
23	p38 Mitogen-Activated Protein Kinase Activity Commits Embryonic Stem Cells to Either Neurogenesis or Cardiomyogenesis. Stem Cells, 2006, 24, 1399-1406.	3.2	94
24	C-Jun NH(2)-terminal kinase mediates proliferation and tumor growth of human prostate carcinoma. Clinical Cancer Research, 2003, 9, 391-401.	7.0	94
25	Energy disruptors: rising stars in anticancer therapy?. Oncogenesis, 2016, 5, e188-e188.	4.9	91
26	Concise Review: Regulation of Embryonic Stem Cell Lineage Commitment by Mitogen-Activated Protein Kinases. Stem Cells, 2007, 25, 1090-1095.	3.2	90
27	c-Jun N-terminal Kinase Is Essential for Growth of Human T98G Glioblastoma Cells. Journal of Biological Chemistry, 2000, 275, 24767-24775.	3.4	89
28	Acadesine Kills Chronic Myelogenous Leukemia (CML) Cells through PKC-Dependent Induction of Autophagic Cell Death. PLoS ONE, 2009, 4, e7889.	2.5	79
29	Metformin and cancer therapy. Current Opinion in Oncology, 2012, 24, 103-108.	2.4	77
30	p38MAP Kinase activity is required for human primary adipocyte differentiation. FEBS Letters, 2007, 581, 5591-5596.	2.8	72
31	Deficiency in the extracellular signal-regulated kinase 1 (ERK1) protects leptin-deficient mice from insulin resistance without affecting obesity. Diabetologia, 2011, 54, 180-189.	6.3	70
32	Primary Cilium in Cancer Hallmarks. International Journal of Molecular Sciences, 2019, 20, 1336.	4.1	65
33	The metabolic perturbators metformin, phenformin and AICAR interfere with the growth and survival of murine PTEN-deficient T cell lymphomas and human T-ALL/T-LL cancer cells. Cancer Letters, 2013, 336, 114-126.	7.2	60
34	The metabolic modulator PGC-1α in cancer. American Journal of Cancer Research, 2019, 9, 198-211.	1.4	55
35	Metformin: A metabolic disruptor and anti-diabetic drug to target human leukemia. Cancer Letters, 2014, 346, 188-196.	7.2	53
36	Insulin Induces REDD1 Expression through Hypoxia-inducible Factor 1 Activation in Adipocytes. Journal of Biological Chemistry, 2010, 285, 5157-5164.	3.4	47

#	Article	IF	Citations
37	The energy disruptor metformin targets mitochondrial integrity via modification of calcium flux in cancer cells. Scientific Reports, 2017, 7, 5040.	3.3	47
38	Metformin-induced energy deficiency leads to the inhibition of lipogenesis in prostate cancer cells. Oncotarget, 2015, 6, 15652-15661.	1.8	45
39	Frequency and prognostic evaluation of 3p21-22 allelic losses in non-small-cell lung cancer. International Journal of Cancer, 1995, 64, 371-377.	5.1	40
40	Inhibition of the GTPase Rac1 Mediates the Antimigratory Effects of Metformin in Prostate Cancer Cells. Molecular Cancer Therapeutics, 2015, 14, 586-596.	4.1	38
41	A new role for the oncogenic high-mobility group A2 transcription factor in myogenesis of embryonic stem cells. Oncogene, 2005, 24, 6281-6291.	5.9	36
42	Knockout of Vdac1 activates hypoxia-inducible factor through reactive oxygen species generation and induces tumor growth by promoting metabolic reprogramming and inflammation. Cancer & Metabolism, 2015, 3, 8.	5.0	36
43	Differential Effect of Retinoic Acid on Growth Regulation by Phorbol Ester in Human Cancer Cell Lines. Journal of Biological Chemistry, 1999, 274, 29779-29785.	3.4	34
44	Human pre-alpha-trypsin inhibitor-precursor heavy chain cDNA and deduced amino-acid sequence. FEBS Journal, 1993, 212, 771-776.	0.2	32
45	Protein N-glycosylation alteration and glycolysis inhibition both contribute to the antiproliferative action of 2-deoxyglucose in breast cancer cells. Breast Cancer Research and Treatment, 2018, 171, 581-591.	2.5	30
46	PGC1α Inhibits Polyamine Synthesis to Suppress Prostate Cancer Aggressiveness. Cancer Research, 2019, 79, 3268-3280.	0.9	27
47	Human inter-α-trypsin inhibitor: Full-length cDNA sequence of the heavy chain H1. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1992, 1132, 114-118.	2.4	26
48	Sirtuin 7: a new marker of aggressiveness in prostate cancer. Oncotarget, 2017, 8, 77309-77316.	1.8	24
49	Identification of cancer-associated missense mutations in hace1 that impair cell growth control and Rac1 ubiquitylation. Scientific Reports, 2017, 7, 44779.	3.3	22
50	UBTD1 is a mechanoâ€regulator controlling cancer aggressiveness. EMBO Reports, 2019, 20, .	4.5	21
51	TAXOMET: A French Prospective Multicentric Randomized Phase II Study of Docetaxel Plus Metformin Versus Docetaxel Plus Placebo in Metastatic Castration-Resistant Prostate Cancer. Clinical Genitourinary Cancer, 2021, 19, 501-509.	1.9	18
52	Isolation and characterization of the human inter-alpha-trypsin inhibitor heavy-chain H1 gene. FEBS Journal, 1993, 218, 283-291.	0.2	16
53	Discovery of a new molecule inducing melanoma cell death: dual AMPK/MELK targeting for novel melanoma therapies. Cell Death and Disease, 2021, 12, 64.	6. 3	16
54	Human Inter-α-Trypsin Inhibitor Heavy Chain H3 Gene. Journal of Biological Chemistry, 1998, 273, 26809-26819.	3.4	14

#	Article	IF	CITATIONS
55	The Adipose Tissue at the Crosstalk Between EDCs and Cancer Development. Frontiers in Endocrinology, 2021, 12, 691658.	3 . 5	14
56	Editorial: Metformin: Beyond Diabetes. Frontiers in Endocrinology, 2019, 10, 851.	3. 5	12
57	Identification of a new aggressive axis driven by ciliogenesis and absence of VDAC1-ΔC in clear cell Renal Cell Carcinoma patients. Theranostics, 2020, 10, 2696-2713.	10.0	12
58	Tandem orientation of the inter-α-trypsin inhibitor heavy chain H1 and H3 genes. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1219, 551-554.	2.4	11
59	The Lac repressor provides a reversible gene expression system in undifferentiated and differentiated embryonic stem cell. Cellular and Molecular Life Sciences, 2005, 62, 1605-1612.	5.4	11
60	Prevention of Mutagenesis: New Potential Mechanisms of Metformin Action in Neoplastic Cells. Cancer Prevention Research, 2012, 5, 503-506.	1.5	9
61	Evidences of a Direct Relationship between Cellular Fuel Supply and Ciliogenesis Regulated by Hypoxic VDAC1-ΔC. Cancers, 2020, 12, 3484.	3.7	9
62	[24] Antisense methods for discrimination of phenotypic properties of closely related gene products: Jun kinase family. Methods in Enzymology, 2000, 314, 342-362.	1.0	8
63	Hypoxia protects against the cell death triggered by oxovanadium–galactomannan complexes in HepG2 cells. Cellular and Molecular Biology Letters, 2019, 24, 18.	7.0	8
64	The defective transforming phenotype of c-Jun Ala63/73 is rescued by mutation of the C-terminal phosphorylation site. Oncogene, 2001, 20, 7425-7429.	5.9	7
65	Coâ€culture of human fibroblasts, smooth muscle and endothelial cells promotes osteopontin induction in hypoxia. Journal of Cellular and Molecular Medicine, 2020, 24, 2931-2941.	3. 6	7
66	Hypoxia and hypoxiaâ€inducible factors promote the development of neointimal hyperplasia in arteriovenous fistula. Journal of Physiology, 2021, 599, 2299-2321.	2.9	7
67	UBTD1 regulates ceramide balance and endolysosomal positioning to coordinate EGFR signaling. ELife, 2021, 10, .	6.0	7
68	TAXOMET: A French prospective multicenter randomized controlled phase II study comparing docetaxel plus metformin versus docetaxel plus placebo in mCRPC Journal of Clinical Oncology, 2019, 37, 5004-5004.	1.6	6
69	Low Doses of PFOA Promote Prostate and Breast Cancer Cells Growth through Different Pathways. International Journal of Molecular Sciences, 2022, 23, 7900.	4.1	5
70	Identification of oncolytic vaccinia restriction factors in canine high-grade mammary tumor cells using single-cell transcriptomics. PLoS Pathogens, 2020, 16, e1008660.	4.7	4
71	Human inter-α-trypsin inhibitor heavy chain H3 gene. Genomic organization, promoter analysis, and gene linkage Journal of Biological Chemistry, 1998, 273, 30842.	3.4	4
72	Effect of Maternal Hyperglycemia on NaK ATPase Activity in Fetal Rat Kidney. Neonatology, 1993, 64, 304-309.	2.0	1

#	Article	lF	CITATIONS
73	"Double hit―makes the difference. Cell Cycle, 2012, 11, 2979-2979.	2.6	1
74	Metformin targets the GTPase Rac1 to inhibit prostate cancer cell migration. Cancer & Metabolism, 2014, 2, O24.	5.0	1
75	Low carbohydrate diet prevents Mcl-1-mediated resistance to BH3-mimetics. Oncotarget, 2016, 7, 73270-73279.	1.8	1
76	An Adaptative Threshold Operator Taking Shape into Account: Application to Mitochondrial Network Segmentation. , $2019, \ldots$		0
77	Organoids as a model to study the impact of EDCs on the prostate gland Endocrine Abstracts, 0, , .	0.0	0
78	Abstract B95: Targeting cancer cell metabolism: The combination of metformin and 2â€deoxyglucose induces p53 dependent apoptosis in prostate cancer cells. , 2009, , .		0
79	Quantitative image based analysis of endocrine disruptor effects on mitochondria morphology-function in prostate cancer cells. Endocrine Abstracts, 0, , .	0.0	0
80	Low doses of persistent organic pollutants (PFOA and PCB153) increase the tumor aggressiveness of hormone-dependent cancer cells. Endocrine Abstracts, 0, , .	0.0	0
81	Meeting report of the 4th biennial Metabolism and Cancer symposium. FEBS Journal, 2021, , .	4.7	0