
Talita Martins Lacerda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9339730/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymers from Renewable Resources: A Challenge for the Future of Macromolecular Materials. Macromolecules, 2008, 41, 9491-9504.	2.2	985
2	The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chemistry, 2011, 13, 1061.	4.6	610
3	Progress of Polymers from Renewable Resources: Furans, Vegetable Oils, and Polysaccharides. Chemical Reviews, 2016, 116, 1637-1669.	23.0	610
4	Furans in polymer chemistry. Progress in Polymer Science, 1997, 22, 1203-1379.	11.8	601
5	The furan/maleimide Diels–Alder reaction: A versatile click–unclick tool in macromolecular synthesis. Progress in Polymer Science, 2013, 38, 1-29.	11.8	576
6	From monomers to polymers from renewable resources: Recent advances. Progress in Polymer Science, 2015, 48, 1-39.	11.8	530
7	Recent Catalytic Advances in the Chemistry of Substituted Furans from Carbohydrates and in the Ensuing Polymers. Topics in Catalysis, 2004, 27, 11-30.	1.3	524
8	Recent advances in surface-modified cellulose nanofibrils. Progress in Polymer Science, 2019, 88, 241-264.	11.8	447
9	The furan counterpart of poly(ethylene terephthalate): An alternative material based on renewable resources. Journal of Polymer Science Part A, 2009, 47, 295-298.	2.5	425
10	Acid-Catalyzed Polycondensation of Furfuryl Alcohol:Â Mechanisms of Chromophore Formation and Cross-Linking. Macromolecules, 1996, 29, 3839-3850.	2.2	365
11	Synthesis and characterization of poly(2,5â€furan dicarboxylate)s based on a variety of diols. Journal of Polymer Science Part A, 2011, 49, 3759-3768.	2.5	305
12	Dielsâ^ Alder Reactions with Novel Polymeric Dienes and Dienophiles:Â Synthesis of Reversibly Cross-Linked Elastomers. Macromolecules, 2002, 35, 7246-7253.	2.2	266
13	Furans as offspring of sugars and polysaccharides and progenitors of a family of remarkable polymers: a review of recent progress. Polymer Chemistry, 2010, 1, 245-251.	1.9	264
14	Materials from renewable resources based on furan monomers and furan chemistry: work in progress. Journal of Materials Chemistry, 2009, 19, 8656.	6.7	224
15	Application of the Dielsâ^'Alder Reaction to Polymers Bearing Furan Moieties. 2. Dielsâ^'Alder and Retro-Dielsâ^'Alder Reactions Involving Furan Rings in Some Styrene Copolymers. Macromolecules, 1998, 31, 314-321.	2.2	206
16	Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose. Cellulose, 2010, 17, 875-889.	2.4	185
17	New biocomposites based on thermoplastic starch and bacterial cellulose. Composites Science and Technology, 2009, 69, 2163-2168.	3.8	168
18	Turning polysaccharides into hydrophobic materials: a critical review. Part 2. Hemicelluloses,	2.4	146

chitin/chitosan, starch, pectin and alginates. Cellulose, 2010, 17, 1045-1065.

#	Article	IF	CITATIONS
19	Recycling Tires? Reversible Crosslinking of Poly(butadiene). Advanced Materials, 2015, 27, 2242-2245.	11.1	135
20	The behaviour of furan derivatives in polymerization reactions. Advances in Polymer Science, 1977, , 47-96.	0.4	128
21	Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly(lactic acid) through a simple approach. Green Chemistry, 2011, 13, 419.	4.6	126
22	Renewable Polymers from Itaconic Acid by Polycondensation and Ring-Opening-Metathesis Polymerization. Macromolecules, 2015, 48, 1398-1403.	2.2	106
23	Urethanes and polyurethanes bearing furan moieties. 4. Synthesis, kinetics and characterization of linear polymers. Macromolecules, 1993, 26, 6706-6717.	2.2	99
24	Synthesis and characterization of furanic polyamides. Macromolecules, 1991, 24, 830-835.	2.2	98
25	Acrylated vegetable oils as photocrosslinkable materials. Journal of Applied Polymer Science, 2006, 99, 3218-3221.	1.3	98
26	Novel bacterial cellulose–acrylic resin nanocomposites. Composites Science and Technology, 2010, 70, 1148-1153.	3.8	96
27	Surface grafting of cellulose nanocrystals with natural antimicrobial rosin mixture using a green process. Carbohydrate Polymers, 2016, 137, 1-8.	5.1	91
28	Novel materials based on chitosan and cellulose. Polymer International, 2011, 60, 875-882.	1.6	89
29	Biosurfactants production by yeasts using sugarcane bagasse hemicellulosic hydrolysate as new sustainable alternative for lignocellulosic biorefineries. Industrial Crops and Products, 2019, 129, 212-223.	2.5	77
30	N-(furfural) chitosan hydrogels based on Diels–Alder cycloadditions and application as microspheres for controlled drug release. Carbohydrate Polymers, 2015, 128, 220-227.	5.1	71
31	Thermoplastic starch modification during melt processing: Hydrolysis catalyzed by carboxylic acids. Carbohydrate Polymers, 2005, 62, 387-390.	5.1	70
32	What Is the Real Value of Chitosan's Surface Energy?. Biomacromolecules, 2008, 9, 610-614.	2.6	70
33	Simple Green Approach to Reinforce Natural Rubber with Bacterial Cellulose Nanofibers. Biomacromolecules, 2013, 14, 2667-2674.	2.6	67
34	Preparation of acrylated and urethanated triacylglycerols. European Journal of Lipid Science and Technology, 2006, 108, 411-420.	1.0	58
35	Formation of polymeric films on cellulosic surfaces by admicellar polymerization. Cellulose, 2001, 8, 303-312.	2.4	56
36	Exopolysaccharide (pullulan) production from sugarcane bagasse hydrolysate aiming to favor the development of biorefineries. International Journal of Biological Macromolecules, 2019, 127, 169-177.	3.6	53

#	Article	IF	CITATIONS
37	Novel suberinâ€based biopolyesters: From synthesis to properties. Journal of Polymer Science Part A, 2011, 49, 2281-2291.	2.5	48
38	The bulk oxypropylation of chitin and chitosan and the characterization of the ensuing polyols. Green Chemistry, 2008, 10, 93-97.	4.6	45
39	Reversible polymerization of novel monomers bearing furan and plant oil moieties: a double click exploitation of renewable resources. RSC Advances, 2012, 2, 2966.	1.7	44
40	Thermoreversible nonlinear dielsâ€ a lder polymerization of furan/plant oil monomers. Journal of Polymer Science Part A, 2013, 51, 2260-2270.	2.5	43
41	Polyesters bearing furan moieties, 2. A detailed investigation of the polytransesterification of difuranic diesters with different diols. Macromolecular Chemistry and Physics, 1998, 199, 2755-2765.	1.1	43
42	Synthesis of 2-furfurylmaleimide and preliminary study of its Diels-Alder polycondensation. Polymer Bulletin, 1998, 40, 389-394.	1.7	40
43	Self-reinforced composites obtained by the partial oxypropylation of cellulose fibers. 1. Characterization of the materials obtained with different types of fibers. Carbohydrate Polymers, 2009, 76, 437-442.	5.1	39
44	Reversible click chemistry at the service of macromolecular materials. Part 4: Diels–Alder non-linear polycondensations involving polyfunctional furan and maleimide monomers. Polymer Chemistry, 2013, 4, 1364-1371.	1.9	39
45	Macromolecular materials based on the application of the Diels–Alder reaction to natural polymers and plant oils. European Journal of Lipid Science and Technology, 2018, 120, 1700091.	1.0	39
46	Polymeric Schiff Bases Bearing Furan Moieties 2. Polyazines and Polyazomethines. Polymer International, 1996, 40, 33-39.	1.6	38
47	Polymers and copolymers from fatty acid-based monomers. Industrial Crops and Products, 2010, 32, 97-104.	2.5	38
48	A Double Click Strategy Applied to the Reversible Polymerization of Furan/Vegetable Oil Monomers. Macromolecular Rapid Communications, 2011, 32, 1319-1323.	2.0	36
49	Polymers and Oligomers Containing Furan Rings. ACS Symposium Series, 1990, , 195-208.	0.5	34
50	Photocrosslinkable polymers bearing pendant conjugated heterocyclic chromophores. Polymer, 2002, 43, 3505-3510.	1.8	34
51	Materials from Renewable Resources. MRS Bulletin, 2010, 35, 187-193.	1.7	32
52	Two alternative approaches to the Diels–Alder polymerization of tung oil. RSC Advances, 2014, 4, 26829.	1.7	32
53	Furan Polymers: State of the Art and Perspectives. Macromolecular Materials and Engineering, 2022, 307, .	1.7	31
54	Synthesis of aliphatic suberin-like polyesters by ecofriendly catalytic systems. High Performance Polymers, 2012, 24, 4-8.	0.8	29

#	Article	IF	CITATIONS
55	A straightforward double coupling of furan moieties onto epoxidized triglycerides: synthesis of monomers based on two renewable resources. Green Chemistry, 2013, 15, 1514.	4.6	29
56	Sisal cellulose acetates obtained from heterogeneous reactions. EXPRESS Polymer Letters, 2008, 2, 423-428.	1.1	29
57	Furan–polyether-modified chitosans as photosensitive polymer electrolytes. Polymer, 2003, 44, 7565-7572.	1.8	27
58	Synthesis, characterization and photocross-linking of copolymers of furan and aliphatic hydroxyethylesters prepared by transesterification. Polymer, 2005, 46, 5476-5483.	1.8	27
59	Self-reinforced composites obtained by the partial oxypropylation of cellulose fibers. 2. Effect of catalyst on the mechanical and dynamic mechanical properties. Cellulose, 2009, 16, 239-246.	2.4	27
60	A Sustainable Route to a Terephthalic Acid Precursor. ChemSusChem, 2016, 9, 942-945.	3.6	26
61	Effect of acid concentration and pulp properties on hydrolysis reactions of mercerized sisal. Carbohydrate Polymers, 2013, 93, 347-356.	5.1	25
62	A new approach to blending starch with natural rubber. Polymer International, 2015, 64, 605-610.	1.6	25
63	Furan-modified natural rubber: A substrate for its reversible crosslinking and for clicking it onto nanocellulose. International Journal of Biological Macromolecules, 2017, 95, 762-768.	3.6	25
64	Thermally reversible nanocellulose hydrogels synthesized via the furan/maleimide Diels-Alder click reaction in water. International Journal of Biological Macromolecules, 2019, 141, 493-498.	3.6	25
65	Synthesis of amphiphilic pullulan-graft-poly(ε-caprolactone) via click chemistry. International Journal of Biological Macromolecules, 2020, 145, 701-711.	3.6	24
66	The Prospering of Macromolecular Materials Based on Plant Oils within the Blooming Field of Polymers from Renewable Resources. Polymers, 2021, 13, 1722.	2.0	23
67	Furan–chitosan hydrogels based on click chemistry. Iranian Polymer Journal (English Edition), 2015, 24, 349-357.	1.3	20
68	Saccharification of Brazilian sisal pulp: evaluating the impact of mercerization on non-hydrolyzed pulp and hydrolysis products. Cellulose, 2012, 19, 351-362.	2.4	19
69	Copolymers of xylan-derived furfuryl alcohol and natural oligomeric tung oil derivatives. International Journal of Biological Macromolecules, 2020, 164, 2497-2511.	3.6	19
70	Monomers and Macromolecular Materials from Renewable Resources: State of the Art and Perspectives. Molecules, 2022, 27, 159.	1.7	19
71	Adding value to the Brazilian sisal: acid hydrolysis of its pulp seeking production of sugars and materials. Cellulose, 2012, 19, 975-992.	2.4	18
72	Oxalic acid as a catalyst for the hydrolysis of sisal pulp. Industrial Crops and Products, 2015, 71, 163-172.	2.5	18

#	Article	IF	CITATIONS
73	Enzymatic hydrolysis of mercerized and unmercerized sisal pulp. Cellulose, 2017, 24, 2437-2453.	2.4	17
74	Photoreactive furan derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 174, 222-228.	2.0	16
75	The Surface and In-Depth Modification of Cellulose Fibers. Advances in Polymer Science, 2015, , 169-206.	0.4	16
76	Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides. International Journal of Biological Macromolecules, 2021, 183, 1514-1539.	3.6	16
77	A preliminary study of polyureas and poly(parabanic acid)s incorporating furan rings. Polymer Bulletin, 2006, 57, 43-50.	1.7	15
78	The cationic polymerization of tung oil and its fatty-acid methyl ester. Industrial Crops and Products, 2020, 157, 112886.	2.5	14
79	Thermoreversible crosslinked thermoplastic starch. Polymer International, 2015, 64, 1366-1372.	1.6	13
80	A minimalist furan–maleimide AB-type monomer and its thermally reversible Diels–Alder polymerization. RSC Advances, 2016, 6, 45696-45700.	1.7	13
81	Sleeving nanocelluloses by admicellar polymerization. Journal of Colloid and Interface Science, 2013, 408, 256-258.	5.0	12
82	A Novel Approach for the Synthesis of Thermoâ€Responsive Coâ€Polyesters Incorporating Reversible Diels–Alder Adducts. Macromolecular Chemistry and Physics, 2019, 220, 1900247.	1.1	12
83	Marriage of Furans and Vegetable Oils through Click Chemistry for the Preparation of Macromolecular Materials. Journal of Renewable Materials, 2014, 2, 2-12.	1.1	10
84	2-Furyloxirane: II. Reduction, Hydrolysis, Alcoholysis and the Uncatalysed Polymerization Induced byOH Groups. Polymer International, 1996, 41, 427-435.	1.6	9
85	Furfuryl alcohol/tung oil matrix-based composites reinforced with bacterial cellulose fibres. Cellulose, 2021, 28, 7109-7121.	2.4	9
86	New Oligomers and Polymers Bearing Furan Moieties. ACS Symposium Series, 2001, , 98-109.	0.5	8
87	Chemical Modification of Pullulan Exopolysaccharide by Grafting Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) via Click Chemistry. Polymers, 2020, 12, 2527.	2.0	8
88	Investigating effects of high cellulase concentration on the enzymatic hydrolysis of the sisal cellulosic pulp. International Journal of Biological Macromolecules, 2019, 138, 919-926.	3.6	7
89	The contribution of bisfurfurylamine to the development and properties of polyureas. Polymer International, 2020, 69, 688-692.	1.6	6
90	Crosslinking starch with dielsâ€alder reaction: <scp>Waterâ€Soluble</scp> materials and waterâ€mediated processes. Polymer International, 0, , .	1.6	4

#	Article	IF	CITATIONS
91	Development of pullulanâ€based carriers for controlled release of hydrophobic ingredients. Journal of Applied Polymer Science, 2021, 138, 51344.	1.3	3
92	Biomimetic Biomaterials Based on Polysaccharides: Recent Progress and Future Perspectives. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	2