Christopher M Yip

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9339559/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	α-Synuclein Membrane Interactions and Lipid Specificity. Journal of Biological Chemistry, 2000, 275, 34328-34334.	1.6	520
2	Roles of Hydrophobicity and Charge Distribution of Cationic Antimicrobial Peptides in Peptide-Membrane Interactions. Journal of Biological Chemistry, 2012, 287, 7738-7745.	1.6	317
3	Elimination of host cell PtdIns(4,5)P2 by bacterial SigD promotes membrane fission during invasion by Salmonella. Nature Cell Biology, 2002, 4, 766-773.	4.6	281
4	Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO ₂ solar cells. Journal of Materials Chemistry, 2012, 22, 1265-1269.	6.7	255
5	Quantitative and Dynamic Assessment of the Contribution of the ER to Phagosome Formation. Cell, 2005, 123, 157-170.	13.5	251
6	Manipulating the Amyloid-β Aggregation Pathway with Chemical Chaperones. Journal of Biological Chemistry, 1999, 274, 32970-32974.	1.6	238
7	Amyloid-β Peptide Assembly: A Critical Step in Fibrillogenesis and Membrane Disruption. Biophysical Journal, 2001, 80, 1359-1371.	0.2	231
8	Structural studies of soluble oligomers of the alzheimer β-amyloid peptide. Journal of Molecular Biology, 2000, 297, 73-87.	2.0	217
9	VAPs and ACBD5 tether peroxisomes to the ER for peroxisome maintenance and lipid homeostasis. Journal of Cell Biology, 2017, 216, 367-377.	2.3	214
10	Correlated Fluorescence-Atomic Force Microscopy of Membrane Domains: Structure of Fluorescence Probes Determines Lipid Localization. Biophysical Journal, 2006, 90, 2170-2178.	0.2	186
11	Aβ42-Peptide Assembly on Lipid Bilayers. Journal of Molecular Biology, 2002, 318, 97-107.	2.0	183
12	Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. Journal of Cell Biology, 2008, 180, 563-578.	2.3	159
13	The evolution of soot morphology in a laminar coflow diffusion flame of a surrogate for Jet A-1. Combustion and Flame, 2013, 160, 2119-2130.	2.8	147
14	Copper(II)-induced Conformational Changes and Protease Resistance in Recombinant and Cellular PrP. Journal of Biological Chemistry, 2000, 275, 19121-19131.	1.6	144
15	Two-dimensional slither swimming of sperm within a micrometre of a surface. Nature Communications, 2015, 6, 8703.	5.8	135
16	Dynamic macrophage "probing―is required for the efficient capture of phagocytic targets. Journal of Cell Biology, 2010, 191, 1205-1218.	2.3	124
17	Biodegradable Quantum Dot Nanocomposites Enable Live Cell Labeling and Imaging of Cytoplasmic Targets. Nano Letters, 2008, 8, 3887-3892.	4.5	116
18	Polymer-Stabilized Lanthanide Fluoride Nanoparticle Aggregates as Contrast Agents for Magnetic Resonance Imaging and Computed Tomography. Chemistry of Materials, 2010, 22, 4728-4739.	3.2	114

Christopher M Yip

#	Article	IF	CITATIONS
19	Direct evidence for membrane pore formation by the apoptotic protein Bax. Biochemical and Biophysical Research Communications, 2002, 298, 744-749.	1.0	100
20	Alternate Aggregation Pathways of the Alzheimer β-Amyloid Peptide: Aβ Association Kinetics at Endosomal pH. Journal of Molecular Biology, 2003, 325, 743-757.	2.0	97
21	Color from colorless nanomaterials: Bragg reflectors made of nanoparticles. Journal of Materials Chemistry, 2009, 19, 3500.	6.7	95
22	Lsr2 of Mycobacterium tuberculosis is a DNA-bridging protein. Nucleic Acids Research, 2008, 36, 2123-2135.	6.5	84
23	Indolicidin Binding Induces Thinning of a Lipid Bilayer. Biophysical Journal, 2014, 106, L29-L31.	0.2	81
24	Mechanisms of antimicrobial peptide action: Studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy. Journal of Structural Biology, 2006, 154, 42-58.	1.3	80
25	Substrate-Facilitated Assembly of Elastin-Like Peptides:  Studies by Variable-Temperature in Situ Atomic Force Microscopy. Journal of the American Chemical Society, 2002, 124, 10648-10649.	6.6	79
26	Cationic peptide-induced remodelling of model membranes: Direct visualization by in situ atomic force microscopy. Journal of Structural Biology, 2008, 162, 121-138.	1.3	76
27	Ordered 2D arrays of ferromagnetic Fe/Co nanoparticle rings from a highly metallized metallopolymer precursor. Journal of Materials Chemistry, 2004, 14, 1686.	6.7	73
28	Molecular imaging of membrane interfaces reveals mode of β-glucosidase activation by saposin C. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17394-17399.	3.3	68
29	Phosphatidylserine dictates the assembly and dynamics of caveolae in the plasma membrane. Journal of Biological Chemistry, 2017, 292, 14292-14307.	1.6	68
30	Stickâ^'Slip of the Three-Phase Line in Measurements of Dynamic Contact Angles. Langmuir, 2006, 22, 628-636.	1.6	65
31	Protein-Induced Formation of Cholesterol-Rich Domainsâ€. Biochemistry, 2001, 40, 10514-10521.	1.2	64
32	Amyloid Fibrils of Glucagon Characterized by High-Resolution Atomic Force Microscopy. Biophysical Journal, 2006, 91, 1905-1914.	0.2	63
33	Peptide-Induced Domain Formation in Supported Lipid Bilayers: Direct Evidence by Combined Atomic Force and Polarized Total Internal Reflection Fluorescence Microscopy. Biophysical Journal, 2010, 98, 815-823.	0.2	62
34	The Mechanism of Membrane Disruption by Cytotoxic Amyloid Oligomers Formed by Prion Protein(106–126) Is Dependent on Bilayer Composition. Journal of Biological Chemistry, 2014, 289, 10419-10430.	1.6	62
35	Pyrolysis of Highly Metallized Polymers:  Ceramic Thin Films Containing Magnetic CoFe Alloy Nanoparticles from a Polyferrocenylsilane with Pendant Cobalt Clusters. Chemistry of Materials, 2006, 18, 2591-2601.	3.2	58
36	Shake-it-off: a simple ultrasonic cryo-EM specimen-preparation device. Acta Crystallographica Section D: Structural Biology, 2019, 75, 1063-1070.	1.1	58

Christopher M Yip

#	Article	IF	CITATIONS
37	An ATG16L1-dependent pathway promotes plasma membrane repair and limits Listeria monocytogenes cell-to-cell spread. Nature Microbiology, 2018, 3, 1472-1485.	5.9	57
38	Structural and Morphological Characterization of Ultralente Insulin Crystals by Atomic Force Microscopy: Evidence of Hydrophobically Driven Assembly. Biophysical Journal, 1998, 75, 1172-1179.	0.2	55
39	Properties of a novel magnetized alginate for magnetic resonance imaging. Biotechnology and Bioengineering, 2003, 83, 282-292.	1.7	53
40	mTOR complex 1 controls the nuclear localization and function of glycogen synthase kinase 3β. Journal of Biological Chemistry, 2018, 293, 14723-14739.	1.6	51
41	Simultaneous in Situ Total Internal Reflectance Fluorescence/Atomic Force Microscopy Studies of DPPC/dPOPC Microdomains in Supported Planar Lipid Bilayers. Journal of the American Chemical Society, 2003, 125, 11838-11839.	6.6	47
42	Molecular Dynamics Simulations of Indolicidin Association with Model Lipid Bilayers. Biophysical Journal, 2007, 92, L100-L102.	0.2	47
43	Characterization of Nanostructure of Stimuli-Responsive Polymeric Composite Membranes. Biomacromolecules, 2004, 5, 1248-1255.	2.6	46
44	A lateral signalling pathway coordinates shape volatility during cell migration. Nature Communications, 2016, 7, 11714.	5.8	46
45	Cholesterol-dependent partitioning of PtdIns(4,5)P2 into membrane domains by the N-terminal fragment of NAP-22 (neuronal axonal myristoylated membrane protein of 22 kDa). Biochemical Journal, 2004, 379, 527-532.	1.7	44
46	Probing Membrane Order and Topography in Supported Lipid Bilayers by Combined Polarized Total Internal Reflection Fluorescence-Atomic Force Microscopy. Biophysical Journal, 2009, 96, 1970-1984.	0.2	41
47	Ubiquitin orchestrates proteasome dynamics between proliferation and quiescence in yeast. Molecular Biology of the Cell, 2017, 28, 2479-2491.	0.9	41
48	Single molecule imaging of supported planar lipid bilayer—reconstituted human insulin receptors by in situ scanning probe microscopy. Journal of Structural Biology, 2002, 137, 283-291.	1.3	40
49	Co-incorporation of Aβ40 and Aβ42 to form mixed pre-fibrillar aggregates. FEBS Journal, 2003, 270, 654-663.	0.2	40
50	Combinatorial microscopy for the study of protein–membrane interactions in supported lipid bilayers: Order parameter measurements by combined polarized TIRFM/AFM. Journal of Structural Biology, 2009, 168, 21-36.	1.3	40
51	Carboxymethyl cellulose binding to mineral substrates: Characterization by atomic force microscopy–based Force spectroscopy and quartz-crystal microbalance with dissipation monitoring. Journal of Colloid and Interface Science, 2013, 402, 58-67.	5.0	40
52	Direct Force Measurements of Insulin Monomerâ^'Monomer Interactions. Biochemistry, 1998, 37, 5439-5449.	1.2	39
53	Atomic force microscopy of macromolecular interactions. Current Opinion in Structural Biology, 2001, 11, 567-572.	2.6	39
54	Direct Visualization of Saposin Remodelling of Lipid Bilayers. Journal of Molecular Biology, 2006, 362, 943-953.	2.0	39

CHRISTOPHER M YIP

#	Article	IF	CITATIONS
55	Microdomain pH Gradient and Kinetics Inside Composite Polymeric Membranes of pH and Glucose Sensitivity. Pharmaceutical Research, 2008, 25, 1150-1157.	1.7	38
56	Binding of TDP-43 to the 3′UTR of Its Cognate mRNA Enhances Its Solubility. Biochemistry, 2014, 53, 5885-5894.	1.2	36
57	The sticholysin family of pore-forming toxins induces the mixing of lipids in membrane domains. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2757-2762.	1.4	34
58	Rab7 palmitoylation is required for efficient endosome-to-TGN trafficking. Journal of Cell Science, 2017, 130, 2579-2590.	1.2	34
59	Automated cell tracking identifies mechanically-oriented cell divisions during <i>Drosophila</i> axis elongation. Development (Cambridge), 2017, 144, 1350-1361.	1.2	33
60	Reversible assembly of helical filaments by de novo designed minimalist peptides. Biopolymers, 2005, 80, 26-33.	1.2	32
61	Forces of Interactions between Bare and Polymer-Coated Iron and Silica: Effect of pH, Ionic Strength, and Humic Acids. Environmental Science & Technology, 2012, 46, 13401-13408.	4.6	32
62	Non-wettable, Oxidation-Stable, Brightly Luminescent, Perfluorodecyl-Capped Silicon Nanocrystal Film. Journal of the American Chemical Society, 2014, 136, 15849-15852.	6.6	32
63	Structural Studies of a Crystalline Insulin Analog Complex with Protamine by Atomic Force Microscopy. Biophysical Journal, 2000, 78, 466-473.	0.2	31
64	Charge Carrier Mobility in Fluorinated Phenoxy Boron Subphthalocyanines: Role of Solid State Packing. Crystal Growth and Design, 2012, 12, 1095-1100.	1.4	31
65	Lipophilicity of the Cystic Fibrosis Drug, Ivacaftor (VX-770), and Its Destabilizing Effect on the Major CF-causing Mutation: F508del. Molecular Pharmacology, 2018, 94, 917-925.	1.0	30
66	Force-Induced Insulin Dimer Dissociation:Â A Molecular Dynamics Study. Journal of the American Chemical Society, 2006, 128, 5330-5331.	6.6	29
67	Inside-out Signaling Promotes Dynamic Changes in the Carcinoembryonic Antigen-related Cellular Adhesion Molecule 1 (CEACAM1) Oligomeric State to Control Its Cell Adhesion Properties. Journal of Biological Chemistry, 2013, 288, 29654-29669.	1.6	29
68	Myofibroblast YAP/TAZ activation is a key step in organ fibrogenesis. JCI Insight, 2022, 7, .	2.3	28
69	Self-assembly of influenza hemagglutinin: studies of ectodomain aggregation by in situ atomic force microscopy. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1513, 167-175.	1.4	27
70	Tracking peptide–membrane interactions: Insights from in situ coupled confocal-atomic force microscopy imaging of NAP-22 peptide insertion and assembly. Journal of Structural Biology, 2006, 155, 458-469.	1.3	27
71	Coupling evanescent-wave fluorescence imaging and spectroscopy with scanning probe microscopy: challenges and insights from TIRF–AFM. Surface and Interface Analysis, 2006, 38, 1459-1471.	0.8	26
72	Tracking Molecular Interactions in Membranes by Simultaneous ATR-FTIR-AFM. Biophysical Journal, 2009, 97, 1225-1231.	0.2	25

CHRISTOPHER M YIP

#	Article	IF	CITATIONS
73	Mitochondrial Genome Maintenance 1 (Mgm1) Protein Alters Membrane Topology and Promotes Local Membrane Bending. Journal of Molecular Biology, 2015, 427, 2599-2609.	2.0	25
74	Cardiolipin synthesizing enzymes form a complex that interacts with cardiolipin-dependent membrane organizing proteins. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 447-457.	1.2	25
75	Combined scanning probe and total internal reflection fluorescence microscopy. Methods, 2008, 46, 2-10.	1.9	23
76	Forces of interaction between fresh iron particles and iron oxide (magnetite): Effect of water chemistry and polymer coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 433, 104-110.	2.3	23
77	UV photopatterning of a highly metallized, cluster-containing poly(ferrocenylsilane). Chemical Communications, 2004, , 780.	2.2	22
78	In Situ Scanning Probe Microscopy Studies of Tetanus Toxin-Membrane Interactions. Biophysical Journal, 2006, 91, 4565-4574.	0.2	22
79	Analysis of Replicating Yeast Chromosomes by DNA Combing. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot085118.	0.2	21
80	Nanoconfined Electrochemical Nucleation of Crystalline Molecular Monolayers on Graphite Substrates. Journal of Physical Chemistry B, 1998, 102, 9958-9965.	1.2	19
81	Supported Lipid Bilayer Templated J-Aggregate Growth: Role of Stabilizing CationâʾʾÏ€ Interactions and Headgroup Packing. Langmuir, 2009, 25, 10719-10729.	1.6	16
82	Effect of Water Chemistry and Aging on Iron—Mica Interaction Forces: Implications for Iron Particle Transport. Langmuir, 2012, 28, 10453-10463.	1.6	16
83	Nanoscale reorganization of sarcoplasmic reticulum in pressure-overload cardiac hypertrophy visualized by dSTORM. Scientific Reports, 2019, 9, 7867.	1.6	15
84	Postalkylation of a Common mPEG- <i>b</i> -PAGE Precursor to Produce Tunable Morphologies of Spheres, Filomicelles, Disks, and Polymersomes. ACS Macro Letters, 2016, 5, 128-133.	2.3	14
85	The marginal cells of the Caenorhabditis elegans pharynx scavenge cholesterol and other hydrophobic small molecules. Nature Communications, 2019, 10, 3938.	5.8	14
86	Super-resolved FT-IR spectroscopy: Strategies, challenges, and opportunities for membrane biophysics. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2272-2282.	1.4	13
87	Forces of interactions between iron and aluminum silicates: Effect of water chemistry and polymer coatings. Journal of Colloid and Interface Science, 2013, 411, 8-15.	5.0	12
88	Mechanism of Amyloidogenesis of a Bacterial AAA+ Chaperone. Structure, 2016, 24, 1095-1109.	1.6	12
89	Quaternary structure of the neuronal protein NAP-22 in aqueous solution. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1650, 50-58.	1.1	10
90	Biomaterials in Reparative Medicine. Annals of the New York Academy of Sciences, 2002, 961, 109-111.	1.8	9

CHRISTOPHER M YIP

#	Article	IF	CITATIONS
91	Functional culture and in vitro genetic and small-molecule manipulation of adult mouse cardiomyocytes. Communications Biology, 2020, 3, 229.	2.0	8
92	Quantitative analysis of catheter roughness induced by cutting and manipulation: a potential prothrombotic risk. Blood Coagulation and Fibrinolysis, 2007, 18, 531-536.	0.5	7
93	Single-Molecule Analysis of Replicating Yeast Chromosomes. Cold Spring Harbor Protocols, 2016, 2016, 2016, pdb.top077784.	0.2	5
94	Singleâ€molecule localization microscopy of septin bundles in mammalian cells. Cytoskeleton, 2019, 76, 63-72.	1.0	5
95	Nucleation and growth of elastin-like peptide fibril multilayers: anin situatomic force microscopy study. Nanotechnology, 2011, 22, 494018.	1.3	4
96	Correlative Optical and Scanning Probe Microscopies for Mapping Interactions at Membranes. Methods in Molecular Biology, 2013, 950, 439-456.	0.4	4
97	High Density or Urban Sprawl: What Works Best in Biology?. ACS Nano, 2017, 11, 1131-1135.	7.3	4
98	Substrate-Dependent Galvanotaxis of Directly Reprogrammed Human Neural Precursor Cells. Bioelectricity, 2020, 2, 229-237.	0.6	3
99	Star Light, Star Bright, First Molecule I See Tonight. Biophysical Journal, 2014, 106, 987-988.	0.2	2
100	SELF-EMULSIFYING DELIVERY SYSTEMS AND LIPID TRANSPORT. , 2012, , 135-170.		1
101	Structural templating of J-aggregates: Visualizing bis(monoacylglycero)phosphate domains in live cells. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1687-1695.	1.1	1
102	Molecular wayfinding: Mapping transport dynamics. APL Bioengineering, 2021, 5, 010401.	3.3	1
103	Hyperspectral super-resolution imaging with far-red emitting fluorophores using a thin-film tunable filter. Review of Scientific Instruments, 2020, 91, 123703.	0.6	1
104	Electrochemical Heteroepitaxial Growth of Molecular Films on Ordered Substrates. Materials Research Society Symposia Proceedings, 1996, 451, 161.	0.1	0
105	Correlated Single Molecule Fluorescence and Scanning Probe Microscopies: Applications to the Study of Soft Materials. Materials Research Society Symposia Proceedings, 2004, 844, 21.	0.1	0
106	Correlated Single Molecule Fluorescence and Scanning Probe Microscopies: Applications to the Study of Soft Materials. Materials Research Society Symposia Proceedings, 2004, 841, R2.1.1/Y2.1.1.	0.1	0
107	Angling for A Better View. Biophysical Journal, 2016, 111, 1141-1142.	0.2	0
108	8. Mapping protein– and peptide–membrane interactions by atomic force microscopy: strategies and		0

opportunities. , 2019, , 269-286.

#	Article	IF	CITATIONS
109	Atomic Force Microscopy. The Electrical Engineering Handbook, 2006, , 67-1-67-29.	0.2	0
110	Dynamic macrophage "probing―is required for the efficient capture of phagocytic targets. Journal of Experimental Medicine, 2010, 207, i37-i37.	4.2	0
111	mTORC1 controls GSK3Î ² nuclear localization. FASEB Journal, 2018, 32, lb522.	0.2	0