Greig I De Zubicaray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9338848/publications.pdf

Version: 2024-02-01

246 papers

17,620 citations

62 h-index

18436

17546 121 g-index

267 all docs

 $\begin{array}{c} 267 \\ \text{docs citations} \end{array}$

times ranked

267

18380 citing authors

#	Article	IF	CITATIONS
1	Greater male than female variability in regional brain structure across the lifespan. Human Brain Mapping, 2022, 43, 470-499.	1.9	76
2	Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3–90 years. Human Brain Mapping, 2022, 43, 431-451.	1.9	143
3	Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3–90 years. Human Brain Mapping, 2022, 43, 452-469.	1.9	72
4	Effects of copy number variations on brain structure and risk for psychiatric illness: Largeâ€scale studies from the <scp>ENIGMA </scp> working groups on <scp>CNVs </scp> . Human Brain Mapping, 2022, 43, 300-328.	1.9	30
5	A <scp>metaâ€nalysis</scp> of deep brain structural shape and asymmetry abnormalities in 2,833 individuals with schizophrenia compared with 3,929 healthy volunteers via the <scp>ENIGMA Consortium</scp> . Human Brain Mapping, 2022, 43, 352-372.	1.9	39
6	SCN1A overexpression, associated with a genomic region marked by a risk variant for a common epilepsy, raises seizure susceptibility. Acta Neuropathologica, 2022, 144, 107-127.	3.9	3
7	Epigenome-wide meta-analysis of blood DNA methylation and its association with subcortical volumes: findings from the ENIGMA Epigenetics Working Group. Molecular Psychiatry, 2021, 26, 3884-3895.	4.1	34
8	Brain aging in major depressive disorder: results from the ENIGMA major depressive disorder working group. Molecular Psychiatry, 2021, 26, 5124-5139.	4.1	136
9	Top-down resolution of lexico-semantic competition in speech production and the role of the left inferior frontal gyrus: an fMRI study. Language, Cognition and Neuroscience, 2021, 36, 1-12.	0.7	7
10	A Sound Explanation for Motor Cortex Engagement during Action Word Comprehension. Journal of Cognitive Neuroscience, 2021, 33, 129-145.	1.1	5
11	1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans. Translational Psychiatry, 2021, 11, 182.	2.4	24
12	Mediated phonological–semantic priming in spoken word production: Evidence for cascaded processing from picture–word interference. Quarterly Journal of Experimental Psychology, 2021, 74, 1284-1294.	0.6	2
13	Queensland Family Cohort: a study protocol. BMJ Open, 2021, 11, e044463.	0.8	14
14	Are Sex Differences in Human Brain Structure Associated With Sex Differences in Behavior?. Psychological Science, 2021, 32, 1183-1197.	1.8	10
15	Brain Correlates of Suicide Attempt in 18,925 Participants Across 18 International Cohorts. Biological Psychiatry, 2021, 90, 243-252.	0.7	29
16	Autism-related dietary preferences mediate autism-gut microbiome associations. Cell, 2021, 184, 5916-5931.e17.	13.5	172
17	Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia. Molecular Psychiatry, 2020, 25, 584-602.	4.1	49
18	Association of Copy Number Variation of the 15q11.2 BP1-BP2 Region With Cortical and Subcortical Morphology and Cognition. JAMA Psychiatry, 2020, 77, 420.	6.0	54

#	Article	IF	Citations
19	Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults. Nature Communications, 2020, 11, 4796.	5.8	61
20	The reliability and heritability of cortical folds and their genetic correlations across hemispheres. Communications Biology, 2020, 3, 510.	2.0	42
21	The genetic architecture of the human cerebral cortex. Science, 2020, 367, .	6.0	450
22	Region-specific sex differences in the hippocampus. NeuroImage, 2020, 215, 116781.	2.1	45
23	Neural Mechanisms for Monitoring and Halting of Spoken Word Production. Journal of Cognitive Neuroscience, 2019, 31, 1946-1957.	1.1	4
24	Homogenizing Estimates of Heritability Among SOLAR-Eclipse, OpenMx, APACE, and FPHI Software Packages in Neuroimaging Data. Frontiers in Neuroinformatics, 2019, 13, 16.	1.3	23
25	Absolute and relative estimates of genetic and environmental variance in brain structure volumes. Brain Structure and Function, 2019, 224, 2805-2821.	1.2	1
26	Associations between brain structure and perceived intensity of sweet and bitter tastes. Behavioural Brain Research, 2019, 363, 103-108.	1.2	8
27	Multi-Site Meta-Analysis of Morphometry. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 1508-1514.	1.9	7
28	Accelerated estimation and permutation inference for ACE modeling. Human Brain Mapping, 2019, 40, 3488-3507.	1.9	19
29	The Shape of Things to Come in Speech Production: A Functional Magnetic Resonance Imaging Study of Visual Form Interference during Lexical Access. Journal of Cognitive Neuroscience, 2019, 31, 913-921.	1.1	2
30	The neurobiology of taboo language processing: fMRI evidence during spoken word production. Social Cognitive and Affective Neuroscience, 2019, 14, 271-279.	1.5	9
31	Genetic architecture of subcortical brain structures in 38,851 individuals. Nature Genetics, 2019, 51, 1624-1636.	9.4	192
32	A Fast Method for Estimating Statistical Power of Multivariate GWAS in Real Case Scenarios: Examples from the Field of Imaging Genetics. Behavior Genetics, 2019, 49, 112-121.	1.4	4
33	Genetic Complexity of Cortical Structure: Differences in Genetic and Environmental Factors Influencing Cortical Surface Area and Thickness. Cerebral Cortex, 2019, 29, 952-962.	1.6	73
34	Testing associations between cannabis use and subcortical volumes in two large populationâ€based samples. Addiction, 2018, 113, 1661-1672.	1.7	21
35	No lexical competition without priming: Evidence from the picture–word interference paradigm. Quarterly Journal of Experimental Psychology, 2018, 71, 2562-2570.	0.6	16
36	The shape of things to come in speech production: Visual form interference during lexical access. Quarterly Journal of Experimental Psychology, 2018, 71, 1921-1938.	0.6	3

#	Article	IF	Citations
37	Lingual Gyrus Surface Area Is Associated with Anxiety-Depression Severity in Young Adults: A Genetic Clustering Approach. ENeuro, 2018, 5, ENEURO.0153-17.2017.	0.9	28
38	Multisite Metaanalysis of Image-Wide Genome-Wide Associations With Morphometry. , 2018, , 1-23.		1
39	Genetic Connectivity–Correlated Genetic Control of Cortical Thickness, Brain Volume, and White Matter. , 2018, , 25-43.		1
40	Genetic Correlation Between Cortical Gray Matter Thickness and White Matter Connections. , 2018, , 85-100.		0
41	The locus of taboo context effects in picture naming. Quarterly Journal of Experimental Psychology, 2017, 70, 75-91.	0.6	7
42	Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Molecular Psychiatry, 2017, 22, 900-909.	4.1	852
43	Novel genetic loci associated with hippocampal volume. Nature Communications, 2017, 8, 13624.	5.8	250
44	Interference from related actions in spoken word production: Behavioural and fMRI evidence. Neuropsychologia, 2017, 96, 78-88.	0.7	14
45	Subcortical brain structure and suicidal behaviour in major depressive disorder: a meta-analysis from the ENIGMA-MDD working group. Translational Psychiatry, 2017, 7, e1116-e1116.	2.4	98
46	Mapping age effects along fiber tracts in young adults., 2017, 2017, 101-104.		1
47	Relationship of a common OXTR gene variant to brain structure and default mode network function in healthy humans. Neurolmage, 2017, 147, 500-506.	2.1	21
48	Genes, Brain, and Language: A brief introduction to the Special Issue. Brain and Language, 2017, 172, 1-2.	0.8	1
49	A comparison of network definitions for detecting sex differences in brain connectivity using Support Vector Machines., 2017, 2017, 961-965.		0
50	Approximating principal genetic components of subcortical shape., 2017, 2017, 1226-1230.		0
51	tDCS effects on word production: Limited by design? Comment on Westwood etÂal. (2017). Cortex, 2017, 96, 137-142.	1.1	9
52	Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex. Brain Imaging and Behavior, 2017, 11, 1497-1514.	1.1	144
53	Genome-wide association study of working memory brain activation. International Journal of Psychophysiology, 2017, 115, 98-111.	0.5	17
54	Genetic influences on individual differences in longitudinal changes in global and subcortical brain volumes: Results of the ENIGMA plasticity working group. Human Brain Mapping, 2017, 38, 4444-4458.	1.9	51

#	Article	IF	Citations
55	Let's Not Miss the Forest for the Trees: A Reply to Montefinese and Vinson's (2015) Commentary on Vieth et al. (2014). Frontiers in Psychology, 2016, 6, 1984.	1.1	0
56	Genetic analysis of cortical sulci in 1,009 adults. , 2016, , .		5
57	Heritability of the shape of subcortical brain structures in the general population. Nature Communications, 2016, 7, 13738.	5.8	78
58	Brain mechanisms of semantic interference in spoken word production: An anodal transcranial Direct Current Stimulation (atDCS) study. Brain and Language, 2016, 157-158, 72-80.	0.8	27
59	Response to Dr Fried & Dr Kievit, and Dr Malhi et al Molecular Psychiatry, 2016, 21, 726-728.	4.1	5
60	Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience, 2016, 19, 1569-1582.	7.1	213
61	Partitioning heritability analysis reveals a shared genetic basis of brain anatomy and schizophrenia. Molecular Psychiatry, 2016, 21, 1680-1689.	4.1	69
62	The heritability of the functional connectome is robust to common nonlinear registration methods. Proceedings of SPIE, 2016, , .	0.8	0
63	Heritability and genetic correlation between the cerebral cortex and associated white matter connections. Human Brain Mapping, 2016, 37, 2331-2347.	1.9	14
64	Comparison of template registration methods for multi-site meta-analysis of brain morphometry. Proceedings of SPIE, 2016, , .	0.8	0
65	Genetic and Environmental Contributions to Functional Connectivity Architecture of the Human Brain. Cerebral Cortex, 2016, 26, 2341-2352.	1.6	100
66	The effect of increased genetic risk for Alzheimer's disease on hippocampal and amygdala volume. Neurobiology of Aging, 2016, 40, 68-77.	1.5	115
67	Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. Nature Neuroscience, 2016, 19, 420-431.	7.1	204
68	Heritability and reliability of automatically segmented human hippocampal formation subregions. Neurolmage, 2016, 128, 125-137.	2.1	107
69	Genes influence the amplitude and timing of brain hemodynamic responses. Neurolmage, 2016, 124, 663-671.	2.1	21
70	Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Molecular Psychiatry, 2016, 21, 806-812.	4.1	850
71	Reliability of Structural Connectivity Examined with Four Different Diffusion Reconstruction Methods at Two Different Spatial and Angular Resolutions. Mathematics and Visualization, 2016, , 219-231.	0.4	2
72	Head Motion and Inattention/Hyperactivity Share Common Genetic Influences: Implications for fMRI Studies of ADHD. PLoS ONE, 2016, 11, e0146271.	1.1	57

#	Article	IF	CITATIONS
73	Neural Mechanisms Underlying Perilesional Transcranial Direct Current Stimulation in Aphasia: A Feasibility Study. Frontiers in Human Neuroscience, 2015, 9, 550.	1.0	20
74	Long-lasting semantic interference effects in object naming are not necessarily conceptually mediated. Frontiers in Psychology, 2015, 6, 578.	1.1	13
75	Heritability analysis of surface-based cortical thickness estimation on a large twin cohort. Proceedings of SPIE, 2015, , .	0.8	0
76	Common genetic variants influence human subcortical brain structures. Nature, 2015, 520, 224-229.	13.7	772
77	Genome-wide interaction analysis reveals replicated epistatic effects on brain structure. Neurobiology of Aging, 2015, 36, S151-S158.	1.5	22
78	Heritability of the network architecture of intrinsic brain functional connectivity. NeuroImage, 2015, 121, 243-252.	2.1	60
79	Interference from object part relations in spoken word production: Behavioural and fMRI evidence. Journal of Neurolinguistics, 2015, 36, 56-71.	0.5	3
80	Perfusion fMRI evidence for priming of shared feature-to-lexical connections during cumulative semantic interference in spoken word production. Language, Cognition and Neuroscience, 2015, 30, 261-272.	0.7	21
81	Heritability of fractional anisotropy in human white matter: A comparison of Human Connectome Project and ENIGMA-DTI data. Neurolmage, 2015, 111, 300-311.	2.1	227
82	Heritability of brain network topology in 853 twins and siblings. , 2015, 2015, 449-453.		5
83	Genetic analysis of structural brain connectivity using DICCCOL models of diffusion MRI in 522 twins. , 2015, 2015, 1167-1171.		2
84	Early and Late Electrophysiological Effects of Distractor Frequency in Picture Naming: Reconciling Input and Output Accounts. Journal of Cognitive Neuroscience, 2015, 27, 1936-1947.	1.1	6
85	The roles of shared vs. distinctive conceptual features in lexical access. Frontiers in Psychology, 2014, 5, 1014.	1.1	17
86	Mind what you sayââ,¬â€general and specific mechanisms for monitoring in speech production. Frontiers in Human Neuroscience, 2014, 8, 514.	1.0	2
87	Feature overlap slows lexical selection: Evidence from the picture–word interference paradigm. Quarterly Journal of Experimental Psychology, 2014, 67, 2325-2339.	0.6	18
88	Modeling of the Hemodynamic Responses in Block Design fMRI Studies. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 316-324.	2.4	65
89	Investigating brain connectivity heritability in a twin study using diffusion imaging data. NeuroImage, 2014, 100, 628-641.	2.1	33
90	A commonly carried genetic variant in the delta opioid receptor gene, <i>OPRD1,</i> is associated with smaller regional brain volumes: Replication in elderly and young populations. Human Brain Mapping, 2014, 35, 1226-1236.	1.9	28

#	Article	IF	Citations
91	Combining meta- and mega- analytic approaches for multi-site diffusion imaging based genetic studies: From the ENIGMA-DTI working group. , 2014, , .		O
92	Changes in White Matter Connectivity Following Therapy for Anomia Post stroke. Neurorehabilitation and Neural Repair, 2014, 28, 325-334.	1.4	47
93	Development of insula connectivity between ages 12 and 30 revealed by high angular resolution diffusion imaging. Human Brain Mapping, 2014, 35, 1790-1800.	1.9	45
94	Automatic clustering and population analysis of white matter tracts using maximum density paths. NeuroImage, 2014, 97, 284-295.	2.1	31
95	The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, 2014, 8, 153-182.	1.1	696
96	Identifying candidate gene effects by restricting search space in a multivariate genetic analysis of white matter microstructure. , 2014, , .		1
97	A functional MRI study of the relationship between naming treatment outcomes and resting state functional connectivity in postâ€stroke aphasia. Human Brain Mapping, 2014, 35, 3919-3931.	1.9	86
98	Obesity gene NEGR1 associated with white matter integrity in healthy young adults. NeuroImage, 2014, 102, 548-557.	2.1	35
99	Heritability of head motion during resting state functional MRI in 462 healthy twins. NeuroImage, 2014, 102, 424-434.	2.1	64
100	Genetic architecture of subcortical brain regions: common and regionâ€specific genetic contributions. Genes, Brain and Behavior, 2014, 13, 821-830.	1.1	52
101	A perfusion fMRI investigation of thematic and categorical context effects in the spoken production of object names. Cortex, 2014, 54, 135-149.	1.1	41
102	Neural activity associated with semantic versus phonological anomia treatments in aphasia. Brain and Language, 2014, 129, 47-57.	0.8	42
103	Genetic effects on the cerebellar role in working memory: Same brain, different genes?. Neurolmage, 2014, 86, 392-403.	2.1	13
104	Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: Comparing meta and megaanalytical approaches for data pooling. NeuroImage, 2014, 95, 136-150.	2.1	127
105	Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics. Neurolmage, 2014, 100, 75-90.	2.1	117
106	Serum cholesterol and variant in cholesterol-related gene CETP predict white matter microstructure. Neurobiology of Aging, 2014, 35, 2504-2513.	1.5	26
107	Power Estimates for Voxel-Based Genetic Association Studies Using Diffusion Imaging. Mathematics and Visualization, 2014, , 229-238.	0.4	2
108	Differential processing of thematic and categorical conceptual relations in spoken word production Journal of Experimental Psychology: General, 2013, 142, 131-142.	1.5	87

#	Article	IF	Citations
109	Genome-wide association identifies genetic variants associated with lentiform nucleus volume in N = 1345 young and elderly subjects. Brain Imaging and Behavior, 2013, 7, 102-115.	1.1	26
110	Brain network efficiency and topology depend on the fiber tracking method: $11\ \text{tractography}$ algorithms compared in 536 subjects. , 2013 , , .		12
111	Genome-wide scan of healthy human connectome discovers <i>SPON1</i> gene variant influencing dementia severity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4768-4773.	3.3	141
112	Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: A pilot project of the ENIGMA–DTI working group. NeuroImage, 2013, 81, 455-469.	2.1	354
113	Relation between variants in the neurotrophin receptor gene, NTRK3, and white matter integrity in healthy young adults. Neurolmage, 2013, 82, 146-153.	2.1	37
114	Development of brain structural connectivity between ages 12 and 30: A 4-Tesla diffusion imaging study in 439 adolescents and adults. NeuroImage, 2013, 64, 671-684.	2.1	172
115	Putting an "End―to the Motor Cortex Representations of Action Words. Journal of Cognitive Neuroscience, 2013, 25, 1957-1974.	1.1	60
116	Development of the & Developme		24
117	Labeling white matter tracts in hardi by fusing multiple tract atlases with applications to genetics. , 2013, 2013, 512-515.		22
118	No specific role for the manual motor system in processing the meanings of words related to the hand. Frontiers in Human Neuroscience, 2013, 7, 11.	1.0	23
119	Bivariate Genome-Wide Association Study of Genetically Correlated Neuroimaging Phenotypes from DTI and MRI through a Seemingly Unrelated Regression Model. Lecture Notes in Computer Science, 2013, , 189-201.	1.0	4
120	Exhaustive Search of the SNP-SNP Interactome Identifies Epistatic Effects on Brain Volume in Two Cohorts. Lecture Notes in Computer Science, 2013, 16, 600-607.	1.0	9
121	Genetic Clustering on the Hippocampal Surface for Genome-Wide Association Studies. Lecture Notes in Computer Science, 2013, 16, 690-697.	1.0	7
122	Predicting White Matter Integrity from Multiple Common Genetic Variants. Neuropsychopharmacology, 2012, 37, 2012-2019.	2.8	49
123	Independent Distractor Frequency and Age-of-Acquisition Effects in Picture–Word Interference: fMRI Evidence for Post-lexical and Lexical Accounts according to Distractor Type. Journal of Cognitive Neuroscience, 2012, 24, 482-495.	1.1	18
124	How a common variant in the growth factor receptor gene, <i>NTRK1 </i> , affects white matter. Bioarchitecture, 2012, 2, 181-184.	1.5	7
125	Genetic and Environmental Influences on Neuroimaging Phenotypes: A Meta-Analytical Perspective on Twin Imaging Studies. Twin Research and Human Genetics, 2012, 15, 351-371.	0.3	194
126	Changes in anatomical brain connectivity between ages 12 and 30: A HARDI study of 467 adolescents and adults., 2012,, 904-908.		8

#	Article	IF	CITATIONS
127	Gene Network Effects on Brain Microstructure and Intellectual Performance Identified in 472 Twins. Journal of Neuroscience, 2012, 32, 8732-8745.	1.7	55
128	A Genome-Wide Association Study Identifies Five Loci Influencing Facial Morphology in Europeans. PLoS Genetics, 2012, 8, e1002932.	1.5	274
129	Neuroimaging and Genetics: Exploring, Searching, and Finding. Twin Research and Human Genetics, 2012, 15, 267-272.	0.3	7
130	Alzheimer's Disease Risk Gene, <i>GAB2</i> , is Associated with Regional Brain Volume Differences in 755 Young Healthy Twins. Twin Research and Human Genetics, 2012, 15, 286-295.	0.3	16
131	Relationship of a Variant in the <i>NTRK1</i> Gene to White Matter Microstructure in Young Adults. Journal of Neuroscience, 2012, 32, 5964-5972.	1.7	40
132	Diffusion imaging protocol effects on genetic associations. , 2012, , 944-947.		14
133	Discovery of genes that affect human brain connectivity: A genome-wide analysis of the connectome. , 2012, , 542-545.		12
134	Genetic influences on sulcal patterns of the brain. , 2012, , .		1
135	Identification of common variants associated with human hippocampal and intracranial volumes. Nature Genetics, 2012, 44, 552-561.	9.4	594
136	Left versus right hemisphere differences in brain connectivity: 4-Tesla HARDI tractography in 569 twins., 2012, 2012, 526-529.		16
137	Probabilistic orthographic cues to grammatical category in the brain. Brain and Language, 2012, 123, 202-210.	0.8	11
138	Hierarchical topological network analysis of anatomical human brain connectivity and differences related to sex and kinship. NeuroImage, 2012, 59, 3784-3804.	2.1	57
139	Brain structure in healthy adults is related to serum transferrin and the H63D polymorphism in the <i>HFE</i> gene. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E851-9.	3.3	83
140	Discovery and replication of gene influences on brain structure using LASSO regression. Frontiers in Neuroscience, 2012, 6, 115.	1.4	91
141	Strong inference in functional neuroimaging. Australian Journal of Psychology, 2012, 64, 19-28.	1.4	5
142	Test-Retest Reliability of Graph Theory Measures of Structural Brain Connectivity. Lecture Notes in Computer Science, 2012, 15, 305-312.	1.0	33
143	Automatic Population HARDI White Matter Tract Clustering by Label Fusion of Multiple Tract Atlases. Lecture Notes in Computer Science, 2012, 7509, 147-156.	1.0	20
144	Genetics of Path Lengths in Brain Connectivity Networks: HARDI-Based Maps in 457 Adults. Lecture Notes in Computer Science, 2012, 7509, 29-40.	1.0	9

#	Article	IF	CITATIONS
145	Genome-wide association reveals dopamine-related genetic effects on caudate volume. Molecular Psychiatry, 2011, 16, 881-881.	4.1	8
146	BDNF gene effects on brain circuitry replicated in 455 twins. NeuroImage, 2011, 55, 448-454.	2.1	110
147	The structure and connectivity of semantic memory in the healthy older adult brain. NeuroImage, 2011, 54, 1488-1494.	2.1	85
148	Genetics of white matter development: A DTI study of 705 twins and their siblings aged 12 to 29. NeuroImage, 2011, 54, 2308-2317.	2.1	232
149	Sex differences in the human connectome: 4-Tesla high angular resolution diffusion imaging (HARDI) tractography in 234 young adult twins. , 2011, , .		21
150	The contribution of genes to cortical thickness and volume. NeuroReport, 2011, 22, 101-105.	0.6	84
151	Discovery and replication of dopamine-related gene effects on caudate volume in young and elderly populations (N=1198) using genome-wide search. Molecular Psychiatry, 2011, 16, 927-937.	4.1	52
152	An fMRI Investigation of Semantic and Phonological Naming Treatment in Aphasia. Procedia, Social and Behavioral Sciences, 2011, 23, 135-137.	0.5	0
153	A Nonconservative Lagrangian Framework for Statistical Fluid Registrationâ€"SAFIRA. IEEE Transactions on Medical Imaging, 2011, 30, 184-202.	5.4	17
154	Cortical organization of environmental sounds by attribute. Human Brain Mapping, 2011, 32, 688-698.	1.9	3
155	Pre-experimental Familiarization Increases Hippocampal Activity for Both Targets and Lures in Recognition Memory: An fMRI Study. Journal of Cognitive Neuroscience, 2011, 23, 4164-4173.	1.1	5
156	Memory Strength Effects in fMRI Studies: A Matter of Confidence. Journal of Cognitive Neuroscience, 2011, 23, 2324-2335.	1,1	11
157	Altered Structural Brain Connectivity in Healthy Carriers of the Autism Risk Gene, <i>CNTNAP2 </i> Brain Connectivity, 2011, 1, 447-459.	0.8	98
158	Hierarchical clustering of the genetic connectivity matrix reveals the network topology of gene action on brain microstructure: An N=531 twin study. , 2011, , .		2
159	Common Alzheimer's Disease Risk Variant Within the <i>CLU</i> Gene Affects White Matter Microstructure in Young Adults. Journal of Neuroscience, 2011, 31, 6764-6770.	1.7	157
160	Heritability of Working Memory Brain Activation. Journal of Neuroscience, 2011, 31, 10882-10890.	1.7	165
161	Heritability of White Matter Fiber Tract Shapes: A HARDI Study of 198 Twins. Lecture Notes in Computer Science, 2011, 2011, 35-43.	1.0	16
162	Tracking the Arcuate Fasciculus in Patients with Aphasia. Procedia, Social and Behavioral Sciences, 2010, 6, 86-87.	0.5	0

#	Article	IF	Citations
163	Mirror neurons, the representation of word meaning, and the foot of the third left frontal convolution. Brain and Language, 2010, 112, 77-84.	0.8	36
164	Scalar connectivity measures from fast-marching tractography reveal heritability of white matter architecture. , $2010, , .$		5
165	Multivariate variance-components analysis in DTI., 2010, 2010, 1157-1160.		10
166	A new combined surface and volume registration. , 2010, , .		4
167	Improving fluid registration through white matter segmentation in a twin study design. , 2010, , .		0
168	Genetic influences on brain asymmetry: A DTI study of 374 twins and siblings. NeuroImage, 2010, 52, 455-469.	2.1	127
169	How does angular resolution affect diffusion imaging measures?. NeuroImage, 2010, 49, 1357-1371.	2.1	70
170	Semantic interference in object naming: An fMRI study of the postcue naming paradigm. NeuroImage, 2010, 50, 796-801.	2.1	18
171	Statistically assisted fluid image registration algorithm - SAFIRA. , 2010, 2010, 364-367.		0
172	A genetic analysis of cortical thickness in 372 twins. , 2010, 2010, 101-104.		1
173	Reducing structural variation to determine the genetics of white matter integrity across hemispheres - A DTI study of 100 twins. , 2009, 2009, 819-822.		0
174	A Lagrangian formulation for statistical fluid registration. , 2009, 2009, 975-978.		4
175	Analyzing multi-fiber reconstruction in high angular resolution diffusion imaging using the tensor distribution function. , 2009, , .		5
176	White matter integrity measured by fractional anisotropy correlates poorly with actual individual fiber anisotropy. , 2009, , .		6
177	Semantic Context and Visual Feature Effects in Object Naming: An fMRI Study using Arterial Spin Labeling. Journal of Cognitive Neuroscience, 2009, 21, 1571-1583.	1.1	42
178	l-Dopa Modulates Functional Connectivity in Striatal Cognitive and Motor Networks: A Double-Blind Placebo-Controlled Study. Journal of Neuroscience, 2009, 29, 7364-7378.	1.7	268
179	Genetics of Brain Fiber Architecture and Intellectual Performance. Journal of Neuroscience, 2009, 29, 2212-2224.	1.7	420
180	Dopaminergic Neuromodulation of Semantic Processing: A 4-T fMRI Study with Levodopa. Cerebral Cortex, 2009, 19, 2651-2658.	1.6	39

#	Article	IF	Citations
181	The tensor distribution function. Magnetic Resonance in Medicine, 2009, 61, 205-214.	1.9	90
182	Auditory context effects in picture naming investigated with event-related fMRI. Cognitive, Affective and Behavioral Neuroscience, 2009, 9, 260-269.	1.0	63
183	The multivariate A/C/E model and the genetics of fiber architecture. , 2009, 2009, 125-128.		5
184	Mapping genetic influences on ventricular structure in twins. NeuroImage, 2009, 44, 1312-1323.	2.1	35
185	Active fibers: Matching deformable tract templates to diffusion tensor images. Neurolmage, 2009, 47, T82-T89.	2.1	18
186	Mapping the regional influence of genetics on brain structure variability — A Tensor-Based Morphometry study. NeuroImage, 2009, 48, 37-49.	2.1	76
187	A Novel Measure of Fractional Anisotropy Based on the Tensor Distribution Function. Lecture Notes in Computer Science, 2009, 12, 845-852.	1.0	16
188	Tensor-Based Analysis of Genetic Influences on Brain Integrity Using DTI in 100 Twins. Lecture Notes in Computer Science, 2009, 12, 967-974.	1.0	9
189	Extending Genetic Linkage Analysis to Diffusion Tensor Images to Map Single Gene Effects on Brain Fiber Architecture. Lecture Notes in Computer Science, 2009, 12, 506-513.	1.0	23
190	Genetics of Anisotropy Asymmetry: Registration and Sample Size Effects. Lecture Notes in Computer Science, 2009, 12, 498-505.	1.0	1
191	Meeting the Challenges of Neuroimaging Genetics. Brain Imaging and Behavior, 2008, 2, 258-263.	1.1	78
192	Fluid Registration of Diffusion Tensor Images Using Information Theory. IEEE Transactions on Medical Imaging, 2008, 27, 442-456.	5.4	98
193	Quantifying the heritability of task-related brain activation and performance during the N-back working memory task: A twin fMRI study. Biological Psychology, 2008, 79, 70-79.	1.1	119
194	Negative priming in naming of categorically related objects: An fMRI study. Cortex, 2008, 44, 881-889.	1.1	8
195	Automated ventricular mapping with multi-atlas fluid image alignment reveals genetic effects in Alzheimer's disease. Neurolmage, 2008, 40, 615-630.	2.1	70
196	Action word meaning representations in cytoarchitectonically defined primary and premotor cortices. Neurolmage, 2008, 43, 634-644.	2.1	171
197	Best individual template selection from deformation tensor minimization. , 2008, 2008, 460-463.		14
198	Quantitative genetic modeling of lateral ventricular shape and volume using multi-atlas fluid image alignment in twins. , 2008, , .		0

#	Article	IF	CITATIONS
199	Mapping genetic influences on brain fiber architecture with high angular resolution diffusion imaging (HARDI). , 2008, , .		4
200	Probabilistic multi-tensor estimation using the Tensor Distribution Function., 2008,,.		2
201	A new registration method based on Log-Euclidean Tensor metrics and its application to genetic studies. , 2008, 2008, 1115-1118.		9
202	The tensor distribution function., 2008,,.		0
203	Comparison of fractional and geodesic anisotropy in diffusion tensor images of 90 monozygotic and dizygotic twins., 2008, 2008, 943-946.		15
204	Brain Fiber Architecture, Genetics, and Intelligence: A High Angular Resolution Diffusion Imaging (HARDI) Study. Lecture Notes in Computer Science, 2008, 11, 1060-1067.	1.0	31
205	Visualization Tools for High Angular Resolution Diffusion Imaging. Lecture Notes in Computer Science, 2008, 11, 298-305.	1.0	15
206	AUTOMATED 3D MAPPING & DESCRIPTION OF MULTIPLE SURFACE-BASED ATLASES., 2007,,.		7
207	Direct mapping of hippocampal surfaces with intrinsic shape context. Neurolmage, 2007, 37, 792-807.	2.1	48
208	Selectivity of human retinotopic visual cortex to S-cone-opponent, L/M-cone-opponent and achromatic stimulation. European Journal of Neuroscience, 2007, 25, 491-502.	1.2	93
209	Neural correlates of semantic priming for ambiguous words: An event-related fMRI study. Brain Research, 2007, 1131, 163-172.	1.1	56
210	Support for an auto-associative model of spoken cued recall: Evidence from fMRI. Neuropsychologia, 2007, 45, 824-835.	0.7	20
211	Tracking Alzheimer's Disease. Annals of the New York Academy of Sciences, 2007, 1097, 183-214.	1.8	209
212	Information-Theoretic Analysis of Brain White Matter Fiber Orientation Distribution Functions. Lecture Notes in Computer Science, 2007, 20, 172-182.	1.0	15
213	Classic identity negative priming involves accessing semantic representations in the left anterior temporal cortex. Neurolmage, 2006, 33, 383-390.	2.1	19
214	Cognitive neuroimaging: Cognitive science out of the armchair. Brain and Cognition, 2006, 60, 272-281.	0.8	10
215	Top-down influences on lexical selection during spoken word production: A 4T fMRI investigation of refractory effects in picture naming. Human Brain Mapping, 2006, 27, 864-873.	1.9	58
216	Assessment of dynamic susceptibility contrast cerebral blood flow response to amphetamine challenge: A human pharmacological magnetic resonance imaging study at 1.5 and 4 T. Magnetic Resonance in Medicine, 2006, 55, 9-15.	1.9	19

#	Article	IF	CITATIONS
217	Diffusion indices on magnetic resonance imaging and neuropsychological performance in amnestic mild cognitive impairment. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 77, 1122-1128.	0.9	171
218	fMRI evidence of word frequency and strength effects during episodic memory encoding. Cognitive Brain Research, 2005, 22, 439-450.	3.3	31
219	fMRI evidence of word frequency and strength effects in recognition memory. Cognitive Brain Research, 2005, 24, 587-598.	3.3	21
220	Orthographic effects on picture naming in Chinese: A 4T erfMRI study. Brain and Language, 2005, 95, 14-15.	0.8	7
221	Quantitative and Qualitative Impairments in Semantic Fluency, but not Phonetic Fluency, as a Potential Risk Factor for Alzheimer's Disease. Brain Impairment, 2004, 5, 177-186.	0.5	5
222	Dynamic Mapping of Alzheimer's Disease. Research and Perspectives in Alzheimer's Disease, 2004, , 87-112.	0.1	1
223	Mapping hippocampal and ventricular change in Alzheimer disease. Neurolmage, 2004, 22, 1754-1766.	2.1	554
224	Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia. NeuroImage, 2004, 23, S2-S18.	2.1	356
225	Brain activity during automatic semantic priming revealed by event-related functional magnetic resonance imaging. Neurolmage, 2003, 20, 302-310.	2.1	112
226	Progressive Dysgraphia in a Case of Posterior Cortical Atrophy. Neurocase, 2003, 9, 251-260.	0.2	18
227	Dynamics of Gray Matter Loss in Alzheimer's Disease. Journal of Neuroscience, 2003, 23, 994-1005.	1.7	998
228	Detecting dynamic and genetic effects on brain structure using high-dimensional cortical pattern matching., 2002, 2002, 473-476.		16
229	Orthographic/Phonological Facilitation of Naming Responses in the Picture?Word Task: An Event-Related fMRI Study Using Overt Vocal Responding. NeuroImage, 2002, 16, 1084-1093.	2.1	7 5
230	MR image-based measurement of rates of change in volumes of brain structures. Part II: application to a study of Alzheimer's disease and normal aging. Magnetic Resonance Imaging, 2002, 20, 41-48.	1.0	53
231	4D deformation modeling of cortical disease progression in Alzheimer's dementia. Magnetic Resonance in Medicine, 2001, 46, 661-666.	1.9	107
232	The semantic interference effect in the picture-word paradigm: An event-related fMRI study employing overt responses. Human Brain Mapping, 2001, 14, 218-227.	1.9	161
233	Brain Activity During the Encoding, Retention, and Retrieval of Stimulus Representations. Learning and Memory, 2001, 8, 243-251.	0.5	39
234	Identifying Rate-Limiting Nodes in Large-Scale Cortical Networks for Visuospatial Processing: An Illustration using fMRI. Journal of Cognitive Neuroscience, 2001, 13, 537-545.	1.1	80

#	Article	IF	CITATIONS
235	Cerebral regions associated with verbal response initiation, suppression and strategy use. Neuropsychologia, 2000, 38, 1292-1304.	0.7	61
236	Motor response suppression and the prepotent tendency to respond: a parametric fMRI study. Neuropsychologia, 2000, 38, 1280-1291.	0.7	141
237	A 1H MRS study of probable Alzheimer's disease and normal aging: implications for longitudinal monitoring of dementia progression. Magnetic Resonance Imaging, 1999, 17, 291-299.	1.0	121
238	An evaluation of differential reinforcement of other behavior, differential reinforcement of incompatible behavior, and restitution for the management of aggressive behaviors., 1998, 13, 157-168.		11
239	A reproducible method for automated extraction of brain volumes from 3D human head mr images. Journal of Magnetic Resonance Imaging, 1998, 8, 480-486.	1.9	13
240	The Modified Card Sorting Test: Test-retest stability and relationships with demographic variables in a healthy older adult sample. British Journal of Clinical Psychology, 1998, 37, 457-466.	1.7	15
241	Prefrontal Cortex Involvement in Selective Letter Generation: A Functional Magnetic Resonance Imaging Study. Cortex, 1998, 34, 389-401.	1.1	43
242	A Role for the Hippocampus in Card Sorting? A Cautionary Note a Comment to Corcoran and Upton. Cortex, 1996, 32, 187-189.	1.1	1
243	Nelson's (1976) modified card sorting test: A review. Clinical Neuropsychologist, 1996, 10, 245-254.	1.5	102
244	Comparison of IQs and Verbal-Performance IQ Discrepancies Estimated from Two Seven-Subtest Short Forms of the WAIS-R. Journal of Psychoeducational Assessment, 1996, 14, 121-130.	0.9	11
245	Neuroimaging and Clinical Neuropsychological Practice , 0, , 56-74.		1
246	Genetic Specificity of Hippocampal Subfield Volumes, Relative to Hippocampal Formation, Identified in 2148 Young Adult Twins and Siblings. Twin Research and Human Genetics, 0, , 1-11.	0.3	1