List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9338620/publications.pdf Version: 2024-02-01

Нлієннім Інг

#	Article	IF	CITATIONS
1	Mechanism of low thermal conductivity for Fe76Si13B8Nb2Cu1 amorphous and nanocrystalline alloys at room temperature. Journal of Non-Crystalline Solids, 2022, 576, 121264.	3.1	6
2	Atomic-level understanding of weakening crystallization in additive manufactured ternary Fe-based metallic glasses with Ni addition. Journal of Non-Crystalline Solids, 2022, 582, 121435.	3.1	6
3	Structural homology of the strength for metallic glasses. Journal of Materials Science and Technology, 2021, 81, 123-130.	10.7	8
4	Tunable and attractive magnetic properties of FeBPSiCu alloys. Journal of Alloys and Compounds, 2021, 859, 157863.	5.5	4
5	Fe-based bulk metallic glass with unprecedented plasticity at room temperature. Intermetallics, 2021, 139, 107377.	3.9	5
6	Estimation of the glass-forming ability of metallic glasses with monolayer two-dimensional model. Computational Materials Science, 2020, 172, 109353.	3.0	0
7	High Bs of FePBCCu nanocrystalline alloys with excellent soft-magnetic properties. Journal of Non-Crystalline Solids, 2020, 530, 119800.	3.1	35
8	Low-Frequency Dynamics and Its Correlation of Nanoscale Structures in Amorphous Solids. Journal of Low Temperature Physics, 2020, 198, 158-166.	1.4	0
9	The effect of slit direction and distribution on mechanical properties of a monatomic Tantalum metallic glass. Journal of Non-Crystalline Solids, 2020, 529, 119770.	3.1	4
10	Crystallization in additive manufacturing of metallic glasses: A review. Additive Manufacturing, 2020, 36, 101568.	3.0	21
11	Low-Temperature Magnetic Properties and Magnetocaloric Effect of Fe–Zr–Cu Amorphous Alloys. Journal of Low Temperature Physics, 2020, 200, 51-61.	1.4	10
12	Atomic-level understanding of crystallization in the selective laser melting of Fe50Ni50 amorphous alloy. Additive Manufacturing, 2020, 34, 101369.	3.0	10
13	Thermal-pressure treatment for tuning the atomic structure of metallic glass Cu-Zr. Journal of Non-Crystalline Solids, 2020, 535, 119963.	3.1	15
14	Plastic Deformation Mechanism of Ductile Fe50Ni30P13C7 Metallic Glass. Metals and Materials International, 2019, 25, 487-498.	3.4	6
15	Brittle-to-ductile transition in monatomic Tantalum nanoporous metallic glass. Journal of Non-Crystalline Solids, 2019, 506, 6-13.	3.1	21
16	Chiral metallic glass nanolattices with combined lower density and improved auxeticity. Physical Chemistry Chemical Physics, 2019, 21, 20588-20594.	2.8	7
17	Atomic-level crystallization in selective laser melting fabricated Zr-based metallic glasses. Physical Chemistry Chemical Physics, 2019, 21, 12406-12413.	2.8	20
18	A novel thermal-tuning Fe-based amorphous alloy for automatically recycled methylene blue degradation. Materials and Design, 2019, 161, 136-146.	7.0	51

#	Article	IF	CITATIONS
19	Oxygen-driven impurities scavenging before solidification of Fe-based metallic glasses. Journal of Alloys and Compounds, 2019, 773, 401-412.	5.5	13
20	Atomic-scale structural evolution in selective laser melting of Cu50Zr50 metallic glass. Computational Materials Science, 2018, 150, 62-69.	3.0	34
21	Ductile Fe-based bulk metallic glasses at room temperature. Materials Science and Technology, 2018, 34, 751-756.	1.6	10
22	Thermal-pressure effects on energy state of metallic glass Cu50Zr50. Computational Materials Science, 2018, 155, 493-498.	3.0	22
23	Fluxing induced boron alloying in Fe-based bulk metallic glasses. Materials and Design, 2017, 129, 63-68.	7.0	20
24	Effects of Ni substitution for Fe on magnetic properties of Fe80â^'Ni P13C7 (x= 0–30) glassy ribbons. Journal of Non-Crystalline Solids, 2017, 463, 68-71.	3.1	21
25	Effects of pressure on structure and mechanical property in monatomic metallic glass. Journal of Non-Crystalline Solids, 2017, 464, 1-4.	3.1	18
26	Non-repeatability of large plasticity for Fe-based bulk metallic glasses. Journal of Alloys and Compounds, 2016, 676, 209-214.	5.5	20
27	Extraordinary magnetocaloric effect of Fe-based bulk glassy rods by combining fluxing treatment and J-quenching technique. Journal of Alloys and Compounds, 2016, 684, 29-33.	5.5	31
28	Effect of Co addition on the magnetic properties and microstructure of FeNbBCu nanocrystalline alloys. Journal of Magnetism and Magnetic Materials, 2016, 419, 198-201.	2.3	33
29	Electronic specific heats for amorphous and crystallized alloys. SpringerPlus, 2016, 5, 699.	1.2	0
30	Effects of Cu substitution for Nb on magnetic properties of Fe-based bulk metallic glasses. Journal of Non-Crystalline Solids, 2016, 443, 108-111.	3.1	22
31	Electronic structure of Cu100â~'xZrx (x=40,50,60) metallic glasses. Materials and Design, 2015, 82, 126-129.	7.0	8
32	Atomic-scale structural heterogeneity and elastic modulus for metallic glasses. Journal of Non-Crystalline Solids, 2015, 426, 137-140.	3.1	5
33	Effects of Crystallization on Boson Peak of Zr \$\$_{52.5}\$\$ 52.5 Cu \$\$_{17.9}\$\$ 17.9 Ni \$\$_{14.6}\$\$ 14.6 Al \$\$_{10}\$\$ 10 Ti \$\$_{5 }\$\$ 5 Bulk Metallic Glass. Journal of Low Temperature Physics, 2015, 178, 11-17.	1.4	4
34	Effects of Annealing on the Specific Heat and Boson Peak for Fe \$\$_{50}\$\$ 50 Co \$\$_{50}\$\$ 50 B \$\$_{20}\$\$ 20 Si \$\$_{4}\$\$ 4 Nb \$\$_{4 }\$\$ 4 Bulk Metallic Glass. Journal of Low Temperature Physics, 2015, 179, 343-349.	1.4	5
35	Enhanced glass forming ability of Fe-based amorphous alloys with minor Cu addition. Journal of Non-Crystalline Solids, 2015, 419, 65-68.	3.1	38
36	Effects of Cu substitution for Fe on the glass-forming ability and soft magnetic properties for Fe-based bulk metallic glasses. Journal of Magnetism and Magnetic Materials, 2014, 358-359, 23-26.	2.3	45

#	Article	IF	CITATIONS
37	Correlation between fractal dimension and strength of brittle bulk metallic glasses. Materials Science and Technology, 2014, 30, 447-450.	1.6	2
38	Mechanical genesis of Henan (China) Yima thrust nappe structure. Journal of Central South University, 2014, 21, 2857-2865.	3.0	9
39	Correlation of atomic packing with the boson peak in amorphous alloys. Journal of Applied Physics, 2014, 116, .	2.5	15
40	Origin of abnormal glass transition behavior in metallic glasses. Intermetallics, 2014, 49, 52-56.	3.9	14
41	Ductile Co–Nb–B bulk metallic glass with ultrahigh strength. Journal of Non-Crystalline Solids, 2014, 386, 121-123.	3.1	27
42	Soft magnetic properties and microstructure of Fe84â^'Nb2B14Cu nanocrystalline alloys. Materials & Design, 2014, 56, 227-231.	5.1	47
43	Mechanical properties and structural features of novel Fe-based bulk metallic glasses with unprecedented plasticity. Scientific Reports, 2014, 4, 6233.	3.3	118
44	Investigation on the magnetic and magnetocaloric properties of PrNi2. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 227501.	0.5	1
45	Nearly free electron model to glass-forming ability of multi-component metallic glasses. Journal of Non-Crystalline Solids, 2013, 361, 82-85.	3.1	17
46	Effect of a preload force on anchor system frequency. International Journal of Mining Science and Technology, 2013, 23, 135-138.	10.3	5
47	Magnetic properties of (Fe1â^'xNix)72B20Si4Nb4 (x=0.0–0.5) bulk metallic glasses. Journal of Magnetism and Magnetic Materials, 2013, 335, 172-176.	2.3	38
48	Determine optimal annealing temperature of Fe based nanocrystalline alloys from their melting point. Materials Science and Technology, 2012, 28, 1465-1469.	1.6	4
49	Microseismic low-frequency precursor effect of bursting failure of coal and rock. Journal of Applied Geophysics, 2012, 79, 55-63.	2.1	67
50	Enhancement of plasticity in Co–Nb–B ternary bulk metallic glasses with ultrahigh strength. Journal of Non-Crystalline Solids, 2012, 358, 3060-3064.	3.1	25
51	Case study on microseismic effect of coal and gas outburst process. International Journal of Rock Mechanics and Minings Sciences, 2012, 53, 101-110.	5.8	75
52	Variations of the permeability with annealing conditions for Fe-based nanocrystalline alloys. Materials & Design, 2012, 36, 428-431.	5.1	4
53	Effects of high Fe substitution for Mn on phase transition and magnetic properties of YFexMn12â~'x compounds. Journal of Magnetism and Magnetic Materials, 2012, 324, 1230-1233.	2.3	2
54	Variations of the Effective Magnetostriction with Annealing Conditions for Nanocrystalline Magnetic Alloys. Journal of Low Temperature Physics, 2011, 164, 272-278.	1.4	2

#	Article	IF	CITATIONS
55	Theoretical analysis of magnetic sensor output voltage. Journal of Magnetism and Magnetic Materials, 2011, 323, 1667-1670.	2.3	7
56	A Study on Step-Like Magnetization Curves in Tb ₃ Ga ₅ O ₁₂ at Low Temperature. Advanced Materials Research, 2011, 415-417, 1315-1318.	0.3	0
57	Effects of three relativity effects on K <inf>α</inf> X-Ray. , 2011, , .		0
58	Low Temperature Specific Heat of Amorphous Alloys. Journal of Low Temperature Physics, 2010, 160, 148-155.	1.4	9
59	More accurate calculations of the magnetic entropy changes. Journal of Magnetism and Magnetic Materials, 2009, 321, 3221-3224.	2.3	8
60	Improvement of magnetic residual stress measurements based on Fourier transform. Materials Science and Technology, 2009, 25, 743-746.	1.6	2
61	Variation of permeability of Nb-poor Finemet under different field amplitudes. Journal of Magnetism and Magnetic Materials, 2008, 320, 1705-1711.	2.3	7
62	Effects of annealing condition and Al content on novel Fe73.5Si13.5B9Cu1Nb3-xAlx alloys. Rare Metals, 2008, 27, 545-549.	7.1	1
63	Permeability spectra study of Fe73.5Si13.5B9Cu1Nb3â^'xAlx (x=0, 0.1, 0.2, 0.4, 0.8 and 1.6). Journal of Alloys and Compounds, 2008, 466, 246-249.	5.5	9
64	Thermally tunable microring resonator for self-collimated beams in photonic crystals. , 2008, , .		0
65	Soft magnetic properties and microstructure of novel Nb poor Finemet type alloys. Materials Science and Technology, 2008, 24, 45-48.	1.6	30
66	Variation in Permeability of Nb-Poor Finemet Under Heating Annealing. Journal of Computational and Theoretical Nanoscience, 2008, 5, 1661-1664.	0.4	0