Andrzej Skrzypczak

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/933832/andrzej-skrzypczak-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

40 19 422 12 h-index g-index citations papers 3.61 52 504 3.5 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
40	Antimicrobial and Cytotoxic Activity of Novel Imidazolium-Based Ionic Liquids <i>Molecules</i> , 2022 , 27,	4.8	1
39	Ionic Liquid Modified Electrochemical Capacitor with Long-Term Performance. <i>ChemElectroChem</i> , 2021 , 8, 3685-3694	4.3	0
38	Innovative ionic liquids as functional agent for wood-polymer composites. <i>Cellulose</i> , 2021 , 28, 10589	5.5	3
37	Studies on copper(II) leaching from e-waste with hydrogen sulfate ionic liquids: Effect of hydrogen peroxide. <i>Hydrometallurgy</i> , 2021 , 205, 105730	4	2
36	Facilitated Transport of Copper(II) across Polymer Inclusion Membrane with Triazole Derivatives as Carrier. <i>Membranes</i> , 2020 , 10,	3.8	3
35	Structural characterization of transfection nanosystems based on tricationic surfactants and short double stranded oligonucleotides. <i>Biochemical and Biophysical Research Communications</i> , 2019 , 518, 70	6 ³ 7 ⁴ 11	1
34	The influence of the cation type of ionic liquid on the production of nanocrystalline cellulose and mechanical properties of chitosan-based biocomposites. <i>Cellulose</i> , 2019 , 26, 4827-4840	5.5	16
33	Benchmark properties of pyrazole derivatives as a potential liquid organic hydrogen carrier: Evaluation of thermochemical data with complementary experimental and computational methods. <i>Journal of Chemical Thermodynamics</i> , 2019 , 128, 173-186	2.9	7
32	Ammonium Gemini Surfactants Form Complexes with Model Oligomers of siRNA and dsDNA. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	2
31	The controlled oxidation of kraft lignin in mild conditions using ionic liquid as a crucial point in fabrication of antibacterial hybrid materials. <i>Journal of Molecular Liquids</i> , 2019 , 274, 370-378	6	12
30	Development of Acidic Imidazolium Ionic Liquids for Activation of Kraft Lignin by Controlled Oxidation: Comprehensive Evaluation and Practical Utility. <i>ChemPlusChem</i> , 2018 , 83, 361-374	2.8	12
29	A comparison of protic and aprotic ionic liquids as effective activating agents of kraft lignin. Developing functional MnO2/lignin hybrid materials. <i>Journal of Molecular Liquids</i> , 2018 , 261, 456-467	6	17
28	Catalyst-free activation of kraft lignin in air using hydrogen sulfate ionic liquids. <i>International Journal of Biological Macromolecules</i> , 2018 , 119, 431-437	7.9	17
27	The effect of chemical modification of wood in ionic liquids on the supermolecular structure and mechanical properties of wood/polypropylene composites. <i>Cellulose</i> , 2018 , 25, 4639-4652	5.5	16
26	Clear distinction between CAC and CMC revealed by high-resolution NMR diffusometry for a series of bis-imidazolium gemini surfactants in aqueous solutions <i>RSC Advances</i> , 2018 , 8, 38470-38482	3.7	10
25	Dispersion of Water Proton Spinllattice Relaxation Rates in Aqueous Solutions of Multiwall Carbon Nanotubes (MWCNTs) Stabilized via Alkyloxymethylimidazolium Surfactants. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 11839-11850	3.8	7
24	Functional Hybrid Materials Based on Manganese Dioxide and Lignin Activated by Ionic Liquids and Their Application in the Production of Lithium Ion Batteries. <i>International Journal of Molecular Sciences</i> , 2017 , 18,	6.3	13

(2009-2016)

23	Dicationic Surfactants with Glycine Counter Ions for Oligonucleotide Transportation. <i>ChemPhysChem</i> , 2016 , 17, 2424-33	3.2	5
22	Influence of the benzyl substituent on radiation chemistry of selected ionic liquids: gaseous products analysis. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2016 , 307, 195-202	1.5	4
21	The thermal deactivation of all-trans and 15-cis beta-carotene-excited states in the ionic liquids without and with methylenoxy group. <i>Journal of Thermal Analysis and Calorimetry</i> , 2015 , 120, 627-632	4.1	2
20	Adsorption of dimeric surfactants in lamellar silicates. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2015 , 364, 108-115	1.2	3
19	Study of interaction between organic compounds and mono or dicationic oxygenated ionic liquids using gas chromatography. <i>Fluid Phase Equilibria</i> , 2015 , 387, 59-72	2.5	18
18	Prediction of antifungal activity of gemini imidazolium compounds. <i>BioMed Research International</i> , 2015 , 2015, 392326	3	12
17	Determination of the Percolation Threshold for the Oxalic, Tartaric, and Lactic Acids Transport through Polymer Inclusion Membranes with 1-Alkylimidazoles as a Carrier. <i>Separation Science and Technology</i> , 2014 , 49, 1745-1755	2.5	14
16	Application of Rough Set Theory to Prediction of Antimicrobial Activity of Bis-Quaternary Imidazolium Chlorides. <i>Fundamenta Informaticae</i> , 2014 , 132, 315-330	1	3
15	Antimicrobial activity and SAR study of new gemini imidazolium-based chlorides. <i>Chemical Biology and Drug Design</i> , 2014 , 83, 278-88	2.9	26
14	Structural and spectroscopic studies on the formation of lipoplexes between DNA and cationic gemini surfactants. <i>Polimery</i> , 2014 , 59, 569-574	3.4	8
13	A Rough Set Approach to Novel Compounds Activity Prediction Based on Surface Active Properties and Molecular Descriptors. <i>Lecture Notes in Computer Science</i> , 2014 , 153-160	0.9	
12	The structure and morphology of gold nanoparticles produced in cationic gemini surfactant systems. <i>Radiation Physics and Chemistry</i> , 2013 , 93, 160-167	2.5	11
11	Evaluation of the Performance of Trigeminal Tricationic Ionic Liquids for Separation Problems. Journal of Chemical & Engineering Data, 2012, 57, 918-927	2.8	31
10	Application of Rough Set Theory to Prediction of Antimicrobial Activity of Bis-quaternary Ammonium Chlorides. <i>Lecture Notes in Computer Science</i> , 2012 , 107-116	0.9	3
9	Building Blocks for Ionic Liquids: A Study of Alkyl Chain Length Dependence of Vaporization Enthalpies of 1-(n-Alkyl)-2-methylimidazoles. <i>Journal of Chemical & Chem</i>	32 - 354	o ¹⁷
8	Building blocks for ionic liquids: Vapor pressures and vaporization enthalpies of 1-(n-alkyl)-imidazoles. <i>Journal of Chemical Thermodynamics</i> , 2011 , 43, 1500-1505	2.9	38
7	Structural and spectroscopic studies of DMPC/cationic surfactant system. <i>Journal of Non-Crystalline Solids</i> , 2010 , 356, 747-753	3.9	5
6	Crystal structure of 1-benzyl-3-cyclododecyloxymethylimidazolium nitrate, [C23H35N2O]NO3]. Zeitschrift Fur Kristallographie - New Crystal Structures, 2009 , 224, 85-86	0.2	

5	Analysis of Relationships Between Structure, Surface Properties, and Antimicrobial Activity of Quaternary Ammonium Chlorides. <i>QSAR and Combinatorial Science</i> , 2009 , 28, 995-1002		4
4	Synthesis and properties of trigeminal tricationic ionic liquids. <i>Chemistry - A European Journal</i> , 2007 , 13, 3106-12	4.8	60
3	Application of the Rough Set Theory in Structure Activity Relationships of Antielectrostatic Imidazolium Compounds. <i>QSAR and Combinatorial Science</i> , 2001 , 20, 395-401		4
2	Synthesis and antimicrobial activity of new quaternary ammonium chlorides. <i>Archiv Der Pharmazie</i> , 1996 , 329, 279-82	4.3	3
1	Quantitative relation between surface active properties and antibiotic activity of	1.9	7