

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9338208/publications.pdf Version: 2024-02-01



WELLI

| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Pseudocapacitance controlled fast-charging and long-life lithium ion battery achieved via a 3D<br>mutually embedded VPO4/rGO electrode. Journal of Alloys and Compounds, 2020, 812, 152135. | 2.8  | 18        |
| 2  | Graphene/Sulfur Hybrid Nanosheets from a Spaceâ€Confined "Sauna―Reaction for Highâ€Performance<br>Lithium–Sulfur Batteries. Advanced Materials, 2015, 27, 5936-5942.                        | 11.1 | 124       |
| 3  | Radio-Frequency-Transparent, Electrically Conductive Graphene Nanoribbon Thin Films as Deicing<br>Heating Layers. ACS Applied Materials & Interfaces, 2014, 6, 298-304.                     | 4.0  | 49        |
| 4  | High-Yield Synthesis of Boron Nitride Nanoribbons <i>via</i> Longitudinal Splitting of Boron Nitride<br>Nanotubes by Potassium Vapor. ACS Nano, 2014, 8, 9867-9873.                         | 7.3  | 27        |
| 5  | Carbon-Based Nanoreporters Designed for Subsurface Hydrogen Sulfide Detection. ACS Applied<br>Materials & Interfaces, 2014, 6, 7652-7658.                                                   | 4.0  | 26        |
| 6  | Electrospun Composite Nanofiber Yarns Containing Oriented Graphene Nanoribbons. ACS Applied<br>Materials & Interfaces, 2013, 5, 6225-6231.                                                  | 4.0  | 83        |
| 7  | Functionalized Graphene Nanoribbons via Anionic Polymerization Initiated by Alkali Metal-Intercalated<br>Carbon Nanotubes. ACS Nano, 2013, 7, 2669-2675.                                    | 7.3  | 35        |
| 8  | Splitting of a Vertical Multiwalled Carbon Nanotube Carpet to a Graphene Nanoribbon Carpet and Its<br>Use in Supercapacitors. ACS Nano, 2013, 7, 5151-5159.                                 | 7.3  | 71        |
| 9  | Highly stable carbon nanoparticles designed for downhole hydrocarbon detection. Energy and Environmental Science, 2012, 5, 8304.                                                            | 15.6 | 42        |
| 10 | Dynamic response of exchange bias in graphene nanoribbons. Applied Physics Letters, 2012, 101, 142402.                                                                                      | 1.5  | 4         |
| 11 | Synthesis of Dispersible Ferromagnetic Graphene Nanoribbon Stacks with Enhanced Electrical<br>Percolation Properties in a Magnetic Field. ACS Nano, 2012, 6, 10396-10404.                   | 7.3  | 21        |
| 12 | Carbon Nanotube and Graphene Nanoribbon-Coated Conductive Kevlar Fibers. ACS Applied Materials<br>& Interfaces, 2012, 4, 131-136.                                                           | 4.0  | 86        |
| 13 | <i>In Situ</i> Intercalation Replacement and Selective Functionalization of Graphene Nanoribbon<br>Stacks. ACS Nano, 2012, 6, 4231-4240.                                                    | 7.3  | 106       |
| 14 | Spin Dynamics and Relaxation in Graphene Nanoribbons: Electron Spin Resonance Probing. ACS Nano, 2012, 6, 7615-7623.                                                                        | 7.3  | 35        |
| 15 | Nanoscale frictional characteristics of graphene nanoribbons. Applied Physics Letters, 2012, 101, 123104.                                                                                   | 1.5  | 14        |
| 16 | Graphene–Ni–α-MnO2 and –Cu–α-MnO2 nanowire blends as highly active non-precious metal catalysts<br>for the oxygen reduction reaction. Chemical Communications, 2012, 48, 7931.              | 2.2  | 84        |
| 17 | In situ transmission electron microscopy of electrochemical lithiation, delithiation and deformation of individual graphene nanoribbons. Carbon, 2012, 50, 3836-3844.                       | 5.4  | 98        |
| 18 | Engineered nanoparticles for hydrocarbon detection in oil-field rocks. Energy and Environmental Science, 2011, 4, 505-509.                                                                  | 15.6 | 72        |

Wei Lu

| #  | Article                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Low-Loss, High-Permittivity Composites Made from Graphene Nanoribbons. ACS Applied Materials &<br>Interfaces, 2011, 3, 4657-4661.                                                   | 4.0 | 61        |
| 20 | High Throughput Preparation of Large Area Transparent Electrodes Using Non-Functionalized<br>Graphene Nanoribbons. Chemistry of Materials, 2011, 23, 935-939.                       | 3.2 | 22        |
| 21 | Highly Conductive Graphene Nanoribbons by Longitudinal Splitting of Carbon Nanotubes Using<br>Potassium Vapor. ACS Nano, 2011, 5, 968-974.                                          | 7.3 | 204       |
| 22 | Improved Synthesis of Graphene Oxide. ACS Nano, 2010, 4, 4806-4814.                                                                                                                 | 7.3 | 10,035    |
| 23 | Graphene Nanoribbon Composites. ACS Nano, 2010, 4, 7415-7420.                                                                                                                       | 7.3 | 264       |
| 24 | Decoration, Migration, and Aggregation of Palladium Nanoparticles on Graphene Sheets. Chemistry of<br>Materials, 2010, 22, 5695-5699.                                               | 3.2 | 186       |
| 25 | Mechanically Assisted Exfoliation and Functionalization of Thermally Converted Graphene Sheets.<br>Chemistry of Materials, 2009, 21, 3045-3047.                                     | 3.2 | 92        |
| 26 | Nonlinear DC conduction behavior in epoxy resin/graphite nanosheets composites. Physica B:<br>Condensed Matter, 2007, 400, 229-236.                                                 | 1.3 | 28        |
| 27 | Voltage-induced resistivity relaxation in a high-density polyethylene/graphite nanosheet composite.<br>Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 860-863.      | 2.4 | 13        |
| 28 | Nonuniversal transport behavior in heterogeneous high-density polyethylene/graphite nanosheet composites. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1846-1852. | 2.4 | 5         |
| 29 | Nonlinear DC response in high-density polyethylene/graphite nanosheets composites. Journal of<br>Materials Science, 2006, 41, 1785-1790.                                            | 1.7 | 18        |