Yuichi Kamiya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9338070/publications.pdf

Version: 2024-02-01

279798 289244 2,061 103 23 40 citations h-index g-index papers 109 109 109 2177 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Heterogeneous Catalysts for Environmental Purification. Handbook of Environmental Chemistry, 2022, , 1.	0.4	O
2	A rapid synthesis of Hf-Beta zeolite as highly active catalyst for Meerwein-Ponndorf-Verley reduction by controlling water content of precursor gel. Microporous and Mesoporous Materials, 2022, 333, 111743.	4.4	3
3	Kinetic and thermodynamic study on adsorption of lead(II) ions in water over dithizone-immobilized coal bottom ash. Materials Chemistry and Physics, 2022, 282, 126005.	4.0	14
4	Ceria-supported palladium as a highly active and selective catalyst for oxidative decomposition of ammonium ion in water with ozone. Catalysis Communications, 2021, 149, 106204.	3.3	8
5	Highly Effective Magnetic Silica-Chitosan Hybrid for Sulfate Ion Adsorption. Environmental Science and Engineering, 2021, , 203-216.	0.2	1
6	Alkyl decorated metal–organic frameworks for selective trapping of ethane from ethylene above ambient pressures. Dalton Transactions, 2021, 50, 10423-10435.	3.3	15
7	Ultrahigh-Pressure Preparation and Catalytic Activity of MOF-Derived Cu Nanoparticles. Nanomaterials, 2021, 11, 1040.	4.1	10
8	Oxidative decomposition of ammonium ion with ozone in the presence of cobalt and chloride ions for the treatment of radioactive liquid waste. Progress in Nuclear Energy, 2021, 139, 103872.	2.9	2
9	Elucidation of Detailed Pore Structure of (NH4)4SiW12O40 Sponge Crystal. Chemistry Letters, 2021, 50, 1736-1739.	1.3	1
10	Magneli-Phase Titanium Suboxide Nanocrystals as Highly Active Catalysts for Selective Acetalization of Furfural. ACS Applied Materials & Samp; Interfaces, 2020, 12, 2539-2547.	8.0	23
11	A Reliable Method to Create Adjacent Acid-Base Pair Sites on Silica through Hydrolysis of Pre-anchored Amide. Chemistry Letters, 2020, 49, 71-74.	1.3	4
12	Chitosan-functionalized natural magnetic particle@silica modified with (3-chloropropyl)trimethoxysilane as a highly stable magnetic adsorbent for gold(III) ion. Materials Chemistry and Physics, 2020, 255, 123507.	4.0	34
13	SrFe _{1â^x} Sn _x O _{3â^Î} nanoparticles with enhanced redox properties for catalytic combustion of benzene. Catalysis Science and Technology, 2020, 10, 6342-6349.	4.1	8
14	The role of cobalt oxide or magnesium oxide in ozonation of ammonia nitrogen in water. Applied Catalysis A: General, 2020, 596, 117515.	4.3	11
15	Catalytic reduction of nitrate in water over alumina-supported nickel catalyst toward purification of polluted groundwater. Catalysis Today, 2020, 352, 204-211.	4.4	8
16	Oxidation of Ammonia Nitrogen with Ozone in Water: A Mini Review. Journal of the Indonesian Chemical Society, 2020, 3, 17.	0.3	4
17	STRAD project for systematic treatments of radioactive liquid wastes generated in nuclear facilities. Progress in Nuclear Energy, 2019, 117, 103090.	2.9	16
18	Drastic change in selectivity caused by addition of oxygen to the hydrogen stream for the hydrogenation of nitrite in water over a supported platinum catalyst. Catalysis Science and Technology, 2019, 9, 4017-4022.	4.1	1

#	Article	IF	CITATIONS
19	Ammonia-treated metal oxides as base catalysts for selective isomerization of glucose in water. Molecular Catalysis, 2019, 475, 110479.	2.0	12
20	Strong BrÃ,nsted acid-modified chromium oxide as an efficient catalyst for the selective oxidation of methacrolein to methacrylic acid. Catalysis Communications, 2019, 125, 43-47.	3.3	12
21	Cs-Beta with an Al-rich composition as a highly active base catalyst for Knoevenagel condensation. Applied Catalysis A: General, 2019, 575, 20-24.	4.3	19
22	The role of steam in selective oxidation of methacrolein over H3PMo12O40. Applied Catalysis A: General, 2019, 570, 164-172.	4.3	15
23	Selective Dehydration of 1,2-Propanediol to Propanal over Boron Phosphate Catalyst in the Presence of Steam. ACS Sustainable Chemistry and Engineering, 2019, 7, 3027-3033.	6.7	14
24	Octyl and propylsulfonic acid co-fixed Fe3O4@SiO2 as a magnetically separable, highly active and reusable solid acid catalyst in water. Molecular Catalysis, 2019, 475, 110248.	2.0	4
25	Determination of Acid Site Location in Dealuminated MCM-68 by ²⁷ Al MQMAS NMR and FT-IR Spectroscopy with Probe Molecules. Journal of Physical Chemistry C, 2018, 122, 1180-1191.	3.1	10
26	Tin-palladium supported on alumina as a highly active and selective catalyst for hydrogenation of nitrate in actual groundwater polluted with nitrate. Catalysis Science and Technology, 2018, 8, 4985-4993.	4.1	18
27	Highly selective and efficient photocatalytic reduction of nitrate in water by a tandem reaction system consisting of Pt/TiO 2 and SnPd/Al 2 O 3 : A comparative study of the tandem reaction system with a typical semiconductor photocatalyst, SnPd/TiO 2. Journal of Catalysis, 2017, 348, 306-313.	6.2	16
28	Enhancement of Catalytic Activity of Cobalt Oxide for Catalytic Ozonation of Ammonium Ion in Water with Repeated Use. Journal of the Japan Petroleum Institute, 2016, 59, 31-34.	0.6	6
29	A Highly Waterâ€Tolerant Magnesium(II) Coordination Polymer Derived from a Flexible Layered Structure. Chemistry - A European Journal, 2016, 22, 11042-11047.	3.3	4
30	Modification of Sn-Beta zeolite: characterization of acidic/basic properties and catalytic performance in Baeyer–Villiger oxidation. Catalysis Science and Technology, 2016, 6, 2787-2795.	4.1	54
31	Observation of microporous cesium salts of 12-tungstosilicic acid using scanning transmission electron microscopy. Chemical Communications, 2015, 51, 9975-9978.	4.1	12
32	Catalytic oxidation of ammonium ion in water with ozone over metal oxide catalysts. Catalysis Today, 2014, 232, 192-197.	4.4	53
33	Combinational effect of Pt/SrTiO3:Rh photocatalyst and SnPd/Al2O3 non-photocatalyst for photocatalytic reduction of nitrate to nitrogen in water under visible light irradiation. Applied Catalysis B: Environmental, 2014, 144, 721-729.	20.2	38
34	Bimodal cesium hydrogen salts of 12-tungstosilicic acid, Cs H4â~'SiW12O40, as highly active solid acid catalysts for transesterification of glycerol tributyrate with methanol. Journal of Catalysis, 2014, 318, 34-42.	6.2	21
35	Combining the Photocatalyst Pt/TiO ₂ and the Nonphotocatalyst SnPd/Al ₂ O ₃ for Effective Photocatalytic Purification of Groundwater Polluted with Nitrate. ACS Catalysis, 2014, 4, 2207-2215.	11.2	58
36	Microporous cesium salts of tetravalent Keggin-type polyoxotungstates Cs4[SiW12O40], Cs4[PW11O39(Sn-n-C4H9)], and Cs4[PW11O39(Sn-OH)] and their adsorption properties. Microporous and Mesoporous Materials, 2013, 174, 34-43.	4.4	11

#	Article	IF	CITATIONS
37	Highly Selective Sorption of Small Polar Molecules by a Nonporous Ionic Crystal of a Lacunary Keggin-type Heteropoly Anion and Alkali Metal Cations. Chemistry Letters, 2012, 41, 331-333.	1.3	5
38	The average Pd oxidation state in Pd/SiO2 quantified by L3-edge XANES analysis and its effects on catalytic activity for CO oxidation. Catalysis Science and Technology, 2012, 2, 767.	4.1	42
39	Highly effective photocatalytic system comprising semiconductor photocatalyst and supported bimetallic non-photocatalyst for selective reduction of nitrate to nitrogen in water. Catalysis Communications, 2012, 20, 99-102.	3.3	42
40	Quantitative determination of average rhodium oxidation state by a simple XANES analysis. Applied Catalysis B: Environmental, 2012, 111-112, 509-514.	20.2	33
41	Changes in Surface Acidity of Silica-Supported Dodecatungstosilicic Acid in Relation to the Loading Amount. Journal of Physical Chemistry C, 2011, 115, 14762-14769.	3.1	20
42	Toward Green and Sustainable Chemical Glycosylation: Enhanced Lewis Acidity of Recyclable Solid Super Acid Catalyst, SO4/ZrO2 by CaCl2 Doping. Journal of Carbohydrate Chemistry, 2011, 30, 575-586.	1.1	7
43	11-Molybdo-1-vanadophosphoricacid H4PMo11VO40 supported on ammonia-modified silica as highly active and selective catalyst for oxidation of methacrolein. Catalysis Communications, 2011, 13, 59-62.	3.3	32
44	Microporous Acidic Cesium Salt of 12-Tungstosilicic Acid Cs3HSiW12O40 as a Size-selective Solid Acid Catalyst. Chemistry Letters, 2010, 39, 881-883.	1.3	17
45	Catalytic oxidation of methacrolein to methacrylic acid over silica-supported 11-molybdo-1-vanadophosphoric acid with different heteropolyacid loadings. Journal of Catalysis, 2010, 273, 1-8.	6.2	80
46	Preferential oligomerization of isobutene in a mixture of isobutene and 1-butene over sodium-modified 12-tungstosilicic acid supported on silica. Journal of Molecular Catalysis A, 2010, 326, 107-112.	4.8	11
47	Hydroconversion of Dimethylpentanes from Methylcyclohexane Using Two Consecutive Reactors Packed with Pt-modified Solid Acid Catalyst and Supported Ir Catalyst. Journal of the Japan Petroleum Institute, 2009, 52, 341-350.	0.6	2
48	Adsorption and Catalytic Properties of the Inner Nanospace of a Gigantic Ringâ€Shaped Polyoxometalate Cluster. Angewandte Chemie - International Edition, 2009, 48, 8703-8706.	13.8	85
49	Remediation of actual groundwater polluted with nitrate by the catalytic reduction over copper–palladium supported on active carbon. Applied Catalysis A: General, 2009, 361, 123-129.	4.3	43
50	Preferential oligomerization of isobutene in mixtures of isobutene and 1-butene over 12-tungstosilicic acid supported on silica. Applied Catalysis A: General, 2009, 353, 68-73.	4.3	16
51	Characterization of sulfated zirconia prepared using reference catalysts and application to several model reactions. Applied Catalysis A: General, 2009, 360, 89-97.	4.3	27
52	Selective Oxidation of <i>n</i> -Butane over Highly Crystalline Vanadyl Pyrophosphate Catalyst Synthesized by Intercalation-exfoliation-reduction of Layered Vanadyl Phosphate Dihydrate. Journal of the Japan Petroleum Institute, 2009, 52, 81-89.	0.6	2
53	Cs2.5H0.5PW12O40 Nanoparticles Fixed on Silica Encapsulating Magnetic Iron Oxide as a Magnetically Separable Water-tolerant Solid Acid. Chemistry Letters, 2009, 38, 736-737.	1.3	5
54	Sulfated Zirconia-supported Palladium as a Highly Active and Highly Selective Catalyst for the Oxidation of Ethylene in the Vapor Phase. Chemistry Letters, 2009, 38, 222-223.	1.3	1

#	Article	IF	CITATIONS
55	Highly Selective Hydrogenation of Nitrate to Harmless Compounds in Water Over Copper–Palladium Bimetallic Clusters Supported on Active Carbon. Catalysis Letters, 2008, 125, 392-395.	2.6	22
56	Catalytic Chemistry of Supported Heteropolyacids and Their Applications as Solid Acids to Industrial Processes. Catalysis Surveys From Asia, 2008, 12, 101-113.	2.6	90
57	Synthesis of (VO)2P2O7 catalystsvia exfoliation-reduction of VOPO4·2H2O in butanol in the presence of ethanol. Research on Chemical Intermediates, 2008, 34, 669-677.	2.7	1
58	Direct addition of acetic acid to ethylene to form ethyl acetate in the presence of H4SiW12O40/SiO2. Applied Catalysis A: General, 2008, 344, 55-60.	4.3	25
59	Acid site-assisted vapor-phase oxidation of ethene to acetic acid over palladium with silica-supported tungstosilicic acid and tungstated zirconia. Applied Catalysis A: General, 2008, 350, 103-110.	4.3	10
60	Control of nano-sized interlayer space of lamellar vanadyl benzylphosphate. Microporous and Mesoporous Materials, 2008, 110, 528-533.	4.4	1
61	Selective oxidation of n-butane over Fe-promoted vanadyl pyrophosphate prepared from modification of nano-sized interlayer of lamellar vanadyl benzylphosphate. Research on Chemical Intermediates, 2008, 34, 455-465.	2.7	0
62	Improved catalytic activity using water for isomerization of linear butene to isobutene over heteropolyacid catalysts. Journal of Catalysis, 2008, 254, 263-271.	6.2	17
63	Transformation of nano-sized vanadyl hydrogen phosphate hemihydrate crystallites to vanadyl pyrophosphate during activation in the presence of n-butane and oxygen. Journal of Catalysis, 2008, 255, 213-219.	6.2	12
64	Catalytic Oxidation of Ammonium Ions with Nitrite Ions in Water over Metallic Platinum Supported on Titanium Dioxide at a Mild Reaction Temperature. Chemistry Letters, 2008, 37, 1024-1025.	1.3	0
65	Palladium–Copper/Hydrophobic Active Carbon as a Highly Active and Selective Catalyst for Hydrogenation of Nitrate in Water. Chemistry Letters, 2007, 36, 994-995.	1.3	12
66	Promotional effect of Te for Direct Oxidation of Ethylene ower Pd-H4SiWi12O40/SiO2. Studies in Surface Science and Catalysis, 2007, , 557-558.	1.5	1
67	Waterâ€Tolerant, Highly Active Solid Acid Catalysts Composed of the Kegginâ€Type Polyoxometalate H ₃ PW ₁₂ O ₄₀ Immobilized in Hydrophobic Nanospaces of Organomodified Mesoporous Silica. Angewandte Chemie - International Edition, 2007, 46, 7625-7628.	13.8	166
68	Alkylation–acylation of p-xylene with γ-butyrolactone or vinylacetic acid catalyzed by heteropolyacid supported on silica. Journal of Molecular Catalysis A, 2007, 262, 77-85.	4.8	44
69	Hydration of $\hat{l}\pm$ -pinene over hydrophobic zeolites in 1,4-dioxane-water and in water. Microporous and Mesoporous Materials, 2007, 101, 176-183.	4.4	25
70	Selective oxidation of n-butane over nanosized crystallites of (VO)2P2O7 synthesized by an exfoliation–reduction process of VOPO4â‹2H2O in a mixture of 2-butanol and ethanol. Journal of Catalysis, 2007, 251, 195-203.	6.2	20
71	Physico-chemicals and catalytic properties of manganese-promoted vanadium phosphate (VPO) catalyst. Reaction Kinetics and Catalysis Letters, 2007, 92, 275-284.	0.6	3
72	Kinetic Studies on the Promotional Effect of Te in Pd–Te–H4SiW12O40/SiO2 for Direct Oxidation of Ethylene to Acetic Acid. Catalysis Letters, 2007, 119, 252-256.	2.6	6

#	Article	IF	Citations
73	Hydration of α-Pinene in a Triphasic System Consisting of α-Pinene, Water, and Cs2.5H0.5PW12O40–SiO2Composite. Chemistry Letters, 2006, 35, 1346-1347.	1.3	6
74	Acidity-attenuated heteropolyacid catalysts: Acidity measurement using benzonitrile-TPD and catalytic performance in the skeletal isomerization of n-heptane. Catalysis Today, 2006, 116, 179-183.	4.4	20
75	Nano-sized crystallites of vanadyl pyrophosphate as a highly selective catalyst for n-butane oxidation. Catalysis Letters, 2006, 111, 159-163.	2.6	9
76	Effect of water vapor on the transformation of VOHPO4·0.5H2O into (VO)2P2O7. Applied Catalysis A: General, 2006, 297, 73-80.	4.3	4
77	Selective hydrogenation of nitrate to nitrite in water over Cu-Pd bimetallic clusters supported on active carbon. Journal of Molecular Catalysis A, 2006, 250, 80-86.	4.8	45
78	Disassembling Single-walled Carbon Nanotube Bundles by Dipole/Dipole Electrostatic Interactions. Chemistry Letters, 2005, 34, 1218-1219.	1.3	54
79	A Two-stage Catalytic Process with Cu–Pd Cluster/Active Carbon and Pd/β-Zeolite for Removal of Nitrate in Water. Chemistry Letters, 2005, 34, 1510-1511.	1.3	11
80	Cs2.5H0.5PW12O40Bonded to an Amine Functionalized SiO2as an Excellent Water-tolerant Solid Acid. Chemistry Letters, 2005, 34, 1376-1377.	1.3	15
81	Pd/WO3–ZrO2as an Efficient Catalyst for the Selective Oxidation of Ethylene to Acetic Acid in the Vapor Phase. Chemistry Letters, 2005, 34, 642-643.	1.3	13
82	Mesostructured vanadium phosphorus oxides assembled with exfoliated VOPO4 nanosheets. Microporous and Mesoporous Materials, 2005, 81, 49-57.	4.4	9
83	Reaction path for oxidation of ethylene to acetic acid over Pd/WO3–ZrO2 in the presence of water. Catalysis Letters, 2005, 101, 225-228.	2.6	17
84	Effect of Fe dopant on the physico-chemical and catalytic properties of vanadyl pyrophosphate catalysts. Reaction Kinetics and Catalysis Letters, 2005, 84, 271-278.	0.6	9
85	Selective oxidation of n-butane in the presence of vanadyl pyrophosphates synthesized by intercalation–exfoliation–reduction of layered VOPO4·2H2O in 2-butanol. Journal of Catalysis, 2004, 221, 225-233.	6.2	26
86	Zirconium Phosphate with a High Surface Area as a Water-Tolerant Solid Acid. Catalysis Letters, 2004, 94, 45-47.	2.6	84
87	Mechanistic study on skeletal isomerization of n-butane using 1,4-13C2-n-butane on typical solid acids and their Pt-promoted bifunctional catalysts. Journal of Molecular Catalysis A, 2004, 209, 145-153.	4.8	17
88	Microstructures of V-P-O catalysts derived from VOHPO4·0.5H2O of different crystallite sizes. Journal of Molecular Catalysis A, 2004, 220, 103-112.	4.8	12
89	Gas-phase hydration of ethene over tungstena–zirconia. Applied Catalysis A: General, 2004, 259, 199-205.	4.3	31
90	Cuâ€"Pd Bimetallic Cluster/AC as a Novel Catalyst for the Reduction of Nitrate to Nitrite. Chemistry Letters, 2004, 33, 908-909.	1.3	11

Үиісні Каміуа

#	ARTICLE	IF	CITATIONS
91	Preparation of catalyst precursors for selective oxidation of n-butane by exfoliation–reduction of VOPO4·2H2O in primary alcohol. Catalysis Today, 2003, 78, 281-290.	4.4	25
92	Alkylation of 1,3,5-trimethylbenzene with \hat{I}^3 -butyrolactone over heteropolyacid catalysts. Applied Catalysis A: General, 2003, 255, 337-344.	4.3	16
93	Selective oxidation of n-butane over iron-doped vanadyl pyrophosphate prepared from lamellar vanadyl n-hexylphosphate. Applied Catalysis A: General, 2003, 253, 1-13.	4.3	10
94	Catalytic dehydration of pentaerythritol to dipentaerythritol over heteropoly compounds. Applied Catalysis A: General, 2003, 253, 29-32.	4.3	3
95	Preparation and Characterization of Lamellar Vanadyl Alkylphosphates as Catalyst Precursors for the Selective Oxidation of Butane. Bulletin of the Chemical Society of Japan, 2003, 76, 837-846.	3.2	6
96	Highly porous vanadium phosphorus oxides derived from vanadyl n-butylphosphate. Microporous and Mesoporous Materials, 2002, 54, 277-283.	4.4	13
97	Synthesis of Novel Layered Vanadyl Alkylphosphates as Catalyst Precursors for Selective Oxidation of n-Butane Sekiyu Gakkaishi (Journal of the Japan Petroleum Institute), 2001, 44, 265-266.	0.1	7
98	Insertion of iron-complex to lamellar vanadyl benzylphosphate for preparation of well-defined catalyst. Catalysis Today, 2001, 71, 161-167.	4.4	7
99	Oxidation of n-butane over vanadyl pyrophosphates prepared from lamellar vanadyl alkylphosphates. Catalysis Today, 2001, 71, 129-135.	4.4	6
100	Catalytic property of vanadyl pyrophosphates for selective oxidation of n-butane at high n-butane concentrations. Applied Catalysis A: General, 2001, 206, 103-112.	4.3	19
101	Dimethylpyridine-temperature programmed desorption (DMP-TPD) for measurement of strength of BrÃnsted and Lewis acid sites on metal oxide catalysts. Applied Catalysis A: General, 2000, 194-195, 253-263.	4.3	43
102	Determination of the Acid Strength of Binary Oxide Catalysts Using Temperature-Programmed Desorption of Pyridine. Bulletin of the Chemical Society of Japan, 1997, 70, 1311-1317.	3.2	10
103	Radical Type Catalytic Oxidation of Butane at Low Temperatures overin-situPrepared Silica Species. Chemistry Letters, 1997, 26, 1051-1052.	1.3	5