
Daniela V ?oji? Merkulov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9338004/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustainable Green Nanotechnologies for Innovative Purifications of Water: Synthesis of the Nanoparticles from Renewable Sources. Nanomaterials, 2022, 12, 263.	1.9	14
2	Removal of Emerging Pollutants from Water Using Environmentally Friendly Processes: Photocatalysts Preparation, Characterization, Intermediates Identification and Toxicity Assessment. Nanomaterials, 2021, 11, 215.	1.9	15
3	Environmental Photocatalytic Degradation of Antidepressants with Solar Radiation: Kinetics, Mineralization, and Toxicity. Nanomaterials, 2021, 11, 632.	1.9	9
4	Water-Active Titanium/Molybdenum/Mixed-Oxides: Removal Efficiency of Organic Water Pollutants by Adsorption and Photocatalysis and Toxicity Assessment. Catalysts, 2021, 11, 1054.	1.6	7
5	Potential of TiO2 with Various Au Nanoparticles for Catalyzing Mesotrione Removal from Wastewaters under Sunlight. Nanomaterials, 2020, 10, 1591.	1.9	6
6	Reaction kinetics of mesotrione removal catalyzed by TiO2 in the presence of different electron acceptors. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127, 205-217.	0.8	4
7	Novel WO3/Fe3O4 magnetic photocatalysts: Preparation, characterization and thiacloprid photodegradation. Journal of Industrial and Engineering Chemistry, 2019, 70, 264-275.	2.9	32
8	Photodegradation of selected pesticides: Photocatalytic activity of bare and PANI-modified TiO2 under simulated solar irradiation. Journal of the Serbian Chemical Society, 2019, 84, 1455-1468.	0.4	5
9	Photocatalytic decomposition of selected biologically active compounds in environmental waters using TiO2/polyaniline nanocomposites: Kinetics, toxicity and intermediates assessment. Environmental Pollution, 2018, 239, 457-465.	3.7	35
10	Enhancement of nano titanium dioxide coatings by fullerene and polyhydroxy fullerene in the photocatalytic degradation of the herbicide mesotrione. Chemosphere, 2018, 196, 145-152.	4.2	23
11	Removal of alprazolam from aqueous solutions by heterogeneous photocatalysis: Influencing factors, intermediates, and products. Chemical Engineering Journal, 2017, 307, 1105-1115.	6.6	56
12	The effect of inorganic anions and organic matter on mesotrione (Callisto®) removal from environmental waters. Journal of the Serbian Chemical Society, 2017, 82, 343-355.	0.4	13
13	Efficiency of neonicotinoids photocatalytic degradation by using annular slurry reactor. Chemical Engineering Journal, 2016, 286, 184-190.	6.6	30
14	Efficient removal of sulcotrione and its formulated compound Tangenta® in aqueous TiO2 suspension: Stability, photoproducts assessment and toxicity. Chemosphere, 2015, 138, 988-994.	4.2	19
15	Mechanism of clomazone photocatalytic degradation: hydroxyl radical, electron and hole scavengers. Reaction Kinetics, Mechanisms and Catalysis, 2015, 115, 67-79.	0.8	61
16	Elongated titania nanostructures as efficient photocatalysts for degradation of selected herbicides. Applied Catalysis B: Environmental, 2014, 160-161, 589-596.	10.8	17
17	Photodegradation of Neonicotinoid Active Ingredients and Their Commercial Formulations in Water by Different Advanced Oxidation Processes. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	26
18	Kinetics and the mechanism of the photocatalytic degradation of mesotrione in aqueous suspension and toxicity of its degradation mixtures. Journal of Molecular Catalysis A, 2014, 392, 67-75.	4.8	28

DANIELA V ?OJI? MERKULOV

#	Article	IF	CITATIONS
19	Toxicity assessment of metoprolol and its photodegradation mixtures obtained by using different type of TiO2 catalysts in the mammalian cell lines. Science of the Total Environment, 2013, 463-464, 968-974.	3.9	52
20	Photocatalytic degradation of the herbicide clomazone in natural water using TiO2: Kinetics, mechanism, and toxicity of degradation products. Chemosphere, 2013, 93, 166-171.	4.2	35
21	The role of surface defect sites of titania nanoparticles in the photocatalysis: Aging and modification. Applied Catalysis B: Environmental, 2013, 138-139, 122-127.	10.8	30
22	Degradation of thiamethoxam and metoprolol by UV, O3 and UV/O3 hybrid processes: Kinetics, degradation intermediates and toxicity. Journal of Hydrology, 2012, 472-473, 314-327.	2.3	95
23	Co-occurrence of Fumonisins and Deoxynivalenol in Wheat and Maize Harvested in Serbia. Bulletin of Environmental Contamination and Toxicology, 2012, 89, 615-619.	1.3	28
24	Photocatalytic Degradation of Herbicide Quinmerac in Various Types of Natural Water. Water, Air, and Soil Pollution, 2012, 223, 3009-3020.	1.1	17
25	Photocatalytic degradation of metoprolol tartrate in suspensions of two TiO2-based photocatalysts with different surface area. Identification of intermediates and proposal of degradation pathways. Journal of Hazardous Materials, 2011, 198, 123-132.	6.5	103
26	Photodegradation of thiacloprid using Fe/TiO2 as a heterogeneous photo-Fenton catalyst. Applied Catalysis B: Environmental, 2011, 107, 363-371.	10.8	112
27	A comparative study of the activity of TiO2 Wackherr and Degussa P25 in the photocatalytic degradation of picloram. Applied Catalysis B: Environmental, 2011, 105, 191-198.	10.8	42
28	Photocatalytic degradation of selected herbicides in aqueous suspensions of doped titania under visible light irradiation. Journal of Hazardous Materials, 2010, 179, 49-56.	6.5	43
29	Degradation of thiacloprid in aqueous solution by UV and UV/H2O2 treatments. Chemosphere, 2010, 81, 114-119.	4.2	63
30	Photocatalytic Degradation of Mecoprop and Clopyralid in Aqueous Suspensions of Nanostructured N-doped TiO2. Molecules, 2010, 15, 2994-3009.	1.7	50
31	Synthesis and Characterization of Rutile TiO2Nanopowders Doped with Iron Ions. Nanoscale Research Letters, 2009, 4, 518-525.	3.1	96
32	Photodegradation of clopyralid in TiO2 suspensions: Identification of intermediates and reaction pathways. Journal of Hazardous Materials, 2009, 168, 94-101.	6.5	68
33	Nitrogen-doped TiO2 suspensions in photocatalytic degradation of mecoprop and (4-chloro-2-methylphenoxy)acetic acid herbicides using various light sources. Desalination, 2009, 244, 293-302.	4.0	27
34	Derivative spectrophotometric determination of the herbicides picloram and triclopyr in mixtures. Journal of the Serbian Chemical Society, 2007, 72, 809-819.	0.4	10
35	Photocatalytic removal of the herbicide clopyralid from water. Journal of the Serbian Chemical Society, 2007, 72, 1477-1486.	0.4	14
36	Photocatalytic activity of synthesized nanosized TiO2 towards the degradation of herbicide mecoprop. Applied Catalysis B: Environmental, 2004, 54, 125-133.	10.8	20

#	Article	IF	CITATIONS
37	Chemometric evaluation of different parameters for removal of tembotrione (agricultural herbicide) from water by adsorption and photocatalytic degradation using sustainable nanotechnology. Food and Energy Security, 0, , .	2.0	2