Sultan Suleymanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9337968/publications.pdf

Version: 2024-02-01

1937685 25 62 4 citations h-index papers

7 g-index 28 28 28 34 docs citations times ranked citing authors all docs

1720034

#	Article	IF	CITATIONS
1	The features of Auger destruction in quasi-one-dimensional objects of inorganic and organic nature. Nuclear Instruments & Methods in Physics Research B, 2022, 512, 66-75.	1.4	3
2	Structure and Properties of Highly Porous Alumina-Based Ceramic Materials after Heating by Concentrated Solar Radiation. Ceramics, 2022, 5, 24-33.	2.6	0
3	INVESTIGATION OF THIN FILMS MGAL2O4, DEPOSITED ON THE SI SUBSTRATES BY VACUUM THERMAL EVAPORATION. Computational Nanotechnology, 2022, 9, 125-131.	0.1	O
4	Behavior of a Heat-Protective Material Based on Al2O3 and SiO2 Fibers under Exposure to Concentrated Solar Energy Flux. Refractories and Industrial Ceramics, 2021, 61, 675-679.	0.6	2
5	DETERMINATION OF THE DEGREE OF BLACKNESS OF THE CERAMIC COMPOSITE MATERIAL VMK-5. Computational Nanotechnology, 2021, 8, 24-28.	0.1	O
6	Phase Transformations in High-Temperature Fiber Materials Exposed to Non-Equilibrium Flow of Heat and Light. Glass and Ceramics (English Translation of Steklo I Keramika), 2020, 76, 374-380.	0.6	1
7	ZnO Films Obtained by Reactive Magnetron Sputtering: Microstructure, Electrical, and Optical Characteristics. Applied Solar Energy (English Translation of Geliotekhnika), 2020, 56, 186-191.	1.6	O
8	Optical Characteristics of Antireflection Coatings Based on Al2O3–SiO2 for Silicon Solar Cells. Journal of Applied Spectroscopy, 2020, 87, 720-723.	0.7	1
9	Modeling of Processes of Heating and Cooling of Materials in a Solar Furnace. Applied Solar Energy (English Translation of Geliotekhnika), 2019, 55, 404-408.	1.6	2
10	Determination of Parameters of Heat Treatment and Melting of Materials in a Solar Furnace. Applied Solar Energy (English Translation of Geliotekhnika), 2018, 54, 485-487.	1.6	1
11	Increasing the Efficiency of Organic Solar Cells by Antireflection Coatings Based on Fluoride Composites. Technical Physics Letters, 2018, 44, 295-296.	0.7	3
12	The Influence of Technological Regimes of Synthesizing a Solar Furnace on the Phase Composition of TiO2-CuO Cermets and the Optical Properties of Coatings on Their Basis. Technical Physics, 2018, 63, 62-66.	0.7	2
13	Antireflection coatings based on fluoride formulations for organic solar cells. Technical Physics Letters, 2016, 42, 359-361.	0.7	4
14	Antireflection composite coatings for organic solar cells. Applied Solar Energy (English Translation) Tj ETQq0 0 0	rgBT/Ove	erloçk 10 Tf 50
15	Effective antireflection coating based on TiO2-SiO2 mixture for solar cells. Technical Physics Letters, 2013, 39, 305-307.	0.7	5
16	Antireflection coatings for solar cells based on an alloy of a mixture of MgO and SiO2. Applied Solar Energy (English Translation of Geliotekhnika), 2010, 46, 296-297.	1.6	6
17	Properties of pyroxene glass ceramics, heat treated in the Big Solar Furnace. Applied Solar Energy (English Translation of Geliotekhnika), 2009, 45, 45-47.	1.6	6
18	Antireflection coatings for solar elements based on Al2O3 and SiO2 oxides. Applied Solar Energy (English Translation of Geliotekhnika), 2009, 45, 295-297.	1.6	3

#	Article	IF	CITATIONS
19	Modification of aluminum alloys in a solar furnace. Applied Solar Energy (English Translation of) Tj ETQq $1\ 1\ 0.78$	4314 rgBT	/Overlock 10
20	Hardening of metal surface via self-propagating high-temperature synthesis in thin films. Applied Solar Energy (English Translation of Geliotekhnika), 2007, 43, 239-242.	1.6	0
21	Cladding of stainless steel on carbon steel. European Physical Journal Special Topics, 1999, 09, Pr3-447-Pr3-452.	0.2	1
22	Making powders of rapidly crystallized molten YBa2Cu3Ox for a superconducting material. Powder Metallurgy and Metal Ceramics, 1999, 38, 436-438.	0.8	0
23	The investigation of melting process on the solar furnace. European Physical Journal Special Topics, 1999, 09, Pr3-453-Pr3-456.	0.2	0
24	Double mirror polyheliostat solar furnace of 1000 kW thermal power. Solar Energy Materials and Solar Cells, 1991, 24, 625-632.	0.4	13
25	Production of calcium zirconate in a solar furnace. Refractories, 1982, 23, 42-43.	0.0	3