Kyle F Davis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9337929/publications.pdf Version: 2024-02-01

KVIE E DAVIS

#	Article	IF	CITATIONS
1	Competition for water induced by transnational land acquisitions for agriculture. Nature Communications, 2022, 13, 505.	12.8	24
2	Crop harvests for direct food use insufficient to meet the UN's food security goal. Nature Food, 2022, 3, 367-374.	14.0	31
3	Largeâ€scale land acquisition as a potential driver of slope instability. Land Degradation and Development, 2021, 32, 1773-1785.	3.9	6
4	Impact of transnational land acquisitions on local food security and dietary diversity. Proceedings of the United States of America, 2021, 118, .	7.1	51
5	Accounting for re-exports substantially reduces China's virtual water demand through agricultural trade. Environmental Research Letters, 2021, 16, 045002.	5.2	5
6	Oil palm cultivation can be expanded while sparing biodiversity in India. Nature Food, 2021, 2, 442-447.	14.0	8
7	Diversified crop rotations enhance groundwater and economic sustainability of food production. Food and Energy Security, 2021, 10, e311.	4.3	30
8	Quantitative assessment of agricultural sustainability reveals divergent priorities among nations. One Earth, 2021, 4, 1262-1277.	6.8	63
9	A systems lens to evaluate the compound human health impacts of anthropogenic activities. One Earth, 2021, 4, 1233-1247.	6.8	0
10	Towards food supply chain resilience to environmental shocks. Nature Food, 2021, 2, 54-65.	14.0	169
11	Culturally appropriate shifts in staple grain consumption can improve multiple sustainability outcomes. Environmental Research Letters, 2021, 16, 125006.	5.2	3
12	India has natural resource capacity to achieve nutrition security, reduce health risks and improve environmental sustainability. Nature Food, 2020, 1, 631-639.	14.0	32
13	The green and blue crop water requirement WATNEEDS model and its global gridded outputs. Scientific Data, 2020, 7, 273.	5.3	45
14	Inclusion, Transparency, and Enforcement: How the EU-Mercosur Trade Agreement Fails the Sustainability Test. One Earth, 2020, 3, 268-272.	6.8	31
15	Tropical forest loss enhanced by large-scale land acquisitions. Nature Geoscience, 2020, 13, 482-488.	12.9	87
16	Water scarcity and fish imperilment driven by beef production. Nature Sustainability, 2020, 3, 319-328.	23.7	73
17	Reducing water scarcity by improving water productivity in the United States. Environmental Research Letters, 2020, 15, 094033.	5.2	29
18	Multidimensional Framework for Achieving Sustainable and Resilient Food Systems in Nigeria. , 2020, , 1137-1159.		0

Kyle F Davis

#	Article	IF	CITATIONS
19	Sensitivity of grain yields to historical climate variability in India. Environmental Research Letters, 2019, 14, 064013.	5.2	54
20	Food Inequality, Injustice, and Rights. BioScience, 2019, 69, 180-190.	4.9	43
21	Sustainable Pathways for Meeting Future Food Demand. , 2019, , 14-20.		5
22	Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest. Renewable and Sustainable Energy Reviews, 2019, 105, 499-512.	16.4	92
23	Assessing the sustainability of post-Green Revolution cereals in India. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25034-25041.	7.1	75
24	Spatial analysis of energy use and GHG emissions from cereal production in India. Science of the Total Environment, 2019, 654, 841-849.	8.0	35
25	Ecohydrology of Agroecosystems: Interactions Between Local and Global Processes. , 2019, , 511-532.		1
26	The Global Foodâ€Energyâ€Water Nexus. Reviews of Geophysics, 2018, 56, 456-531.	23.0	446
27	The Waterâ€Energy Nexus of Hydraulic Fracturing: A Global Hydrologic Analysis for Shale Oil and Gas Extraction. Earth's Future, 2018, 6, 745-756.	6.3	61
28	Multidimensional Framework for Achieving Sustainable and Resilient Food Systems in Nigeria. , 2018, , 1-23.		0
29	Closing the yield gap while ensuring water sustainability. Environmental Research Letters, 2018, 13, 104002.	5.2	127
30	A universal model for predicting human migration under climate change: examining future sea level rise in Bangladesh. Environmental Research Letters, 2018, 13, 064030.	5.2	76
31	Impact of Historical Changes in Coarse Cereals Consumption in India on Micronutrient Intake and Anemia Prevalence. Food and Nutrition Bulletin, 2018, 39, 377-392.	1.4	51
32	Alternative cereals can improve water use and nutrient supply in India. Science Advances, 2018, 4, eaao1108.	10.3	87
33	Understanding dietary and staple food transitions in China from multiple scales. PLoS ONE, 2018, 13, e0195775.	2.5	40
34	New frontiers of land and water commodification: socioâ€environmental controversies of largeâ€scale land acquisitions. Land Degradation and Development, 2017, 28, 2234-2244.	3.9	52
35	Environmental consequences of oil production from oil sands. Earth's Future, 2017, 5, 158-170.	6.3	43
36	Water limits to closing yield gaps. Advances in Water Resources, 2017, 99, 67-75.	3.8	58

Kyle F Davis

#	Article	IF	CITATIONS
37	A global reference database of crowdsourced cropland data collected using the Geo-Wiki platform. Scientific Data, 2017, 4, 170136.	5.3	46
38	Increased food production and reduced water use through optimized crop distribution. Nature Geoscience, 2017, 10, 919-924.	12.9	238
39	Ancient water supports today's energy needs. Earth's Future, 2017, 5, 515-519.	6.3	9
40	Water Savings of Crop Redistribution in the United States. Water (Switzerland), 2017, 9, 83.	2.7	35
41	Meeting future food demand with current agricultural resources. Global Environmental Change, 2016, 39, 125-132.	7.8	277
42	Environmental impact food labels combining carbon, nitrogen, and water footprints. Food Policy, 2016, 61, 213-223.	6.0	144
43	Climate change and large-scale land acquisitions in Africa: Quantifying the future impact on acquired water resources. Advances in Water Resources, 2016, 94, 231-237.	3.8	21
44	The environmental cost of subsistence: Optimizing diets to minimize footprints. Science of the Total Environment, 2016, 553, 120-127.	8.0	121
45	Sustaining food self-sufficiency of a nation: The case of Sri Lankan rice production and related water and fertilizer demands. Ambio, 2016, 45, 302-312.	5.5	25
46	The global land rush and climate change. Earth's Future, 2015, 3, 298-311.	6.3	37
47	Livestock intensification and the influence of dietary change: A calorie-based assessment of competition for crop production. Science of the Total Environment, 2015, 538, 817-823.	8.0	39
48	Historical trade-offs of livestock's environmental impacts. Environmental Research Letters, 2015, 10, 125013.	5.2	41
49	Accelerated deforestation driven by large-scale land acquisitions in Cambodia. Nature Geoscience, 2015, 8, 772-775.	12.9	164
50	Land grabbing: a preliminary quantification of economic impacts on rural livelihoods. Population and Environment, 2014, 36, 180-192.	3.0	120
51	Water markets as a response to scarcity. Water Policy, 2014, 16, 625-649.	1.5	73
52	Moderating diets to feed the future. Earth's Future, 2014, 2, 559-565.	6.3	59
53	Global desertification: Drivers and feedbacks. Advances in Water Resources, 2013, 51, 326-344.	3.8	656
54	Global Spatio-Temporal Patterns in Human Migration: A Complex Network Perspective. PLoS ONE, 2013, 8. e53723.	2.5	90