Kyle F Davis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9337929/publications.pdf

Version: 2024-02-01

		117625	189892
54	4,231	34	50
papers	citations	h-index	g-index
60	60	60	50.40
60	60	60	5043
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Global desertification: Drivers and feedbacks. Advances in Water Resources, 2013, 51, 326-344.	3.8	656
2	The Global Foodâ€Energyâ€Water Nexus. Reviews of Geophysics, 2018, 56, 456-531.	23.0	446
3	Meeting future food demand with current agricultural resources. Global Environmental Change, 2016, 39, 125-132.	7.8	277
4	Increased food production and reduced water use through optimized crop distribution. Nature Geoscience, 2017, 10, 919-924.	12.9	238
5	Towards food supply chain resilience to environmental shocks. Nature Food, 2021, 2, 54-65.	14.0	169
6	Accelerated deforestation driven by large-scale land acquisitions in Cambodia. Nature Geoscience, 2015, 8, 772-775.	12.9	164
7	Environmental impact food labels combining carbon, nitrogen, and water footprints. Food Policy, 2016, 61, 213-223.	6.0	144
8	Closing the yield gap while ensuring water sustainability. Environmental Research Letters, 2018, 13, 104002.	5.2	127
9	The environmental cost of subsistence: Optimizing diets to minimize footprints. Science of the Total Environment, 2016, 553, 120-127.	8.0	121
10	Land grabbing: a preliminary quantification of economic impacts on rural livelihoods. Population and Environment, 2014, 36, 180-192.	3.0	120
11	Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest. Renewable and Sustainable Energy Reviews, 2019, 105, 499-512.	16.4	92
12	Global Spatio-Temporal Patterns in Human Migration: A Complex Network Perspective. PLoS ONE, 2013, 8, e53723.	2.5	90
13	Alternative cereals can improve water use and nutrient supply in India. Science Advances, 2018, 4, eaao1108.	10.3	87
14	Tropical forest loss enhanced by large-scale land acquisitions. Nature Geoscience, 2020, 13, 482-488.	12.9	87
15	A universal model for predicting human migration under climate change: examining future sea level rise in Bangladesh. Environmental Research Letters, 2018, 13, 064030.	5 . 2	76
16	Assessing the sustainability of post-Green Revolution cereals in India. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25034-25041.	7.1	75
17	Water markets as a response to scarcity. Water Policy, 2014, 16, 625-649.	1.5	73
18	Water scarcity and fish imperilment driven by beef production. Nature Sustainability, 2020, 3, 319-328.	23.7	73

#	Article	IF	CITATIONS
19	Quantitative assessment of agricultural sustainability reveals divergent priorities among nations. One Earth, 2021, 4, 1262-1277.	6.8	63
20	The Waterâ€Energy Nexus of Hydraulic Fracturing: A Global Hydrologic Analysis for Shale Oil and Gas Extraction. Earth's Future, 2018, 6, 745-756.	6.3	61
21	Moderating diets to feed the future. Earth's Future, 2014, 2, 559-565.	6.3	59
22	Water limits to closing yield gaps. Advances in Water Resources, 2017, 99, 67-75.	3.8	58
23	Sensitivity of grain yields to historical climate variability in India. Environmental Research Letters, 2019, 14, 064013.	5.2	54
24	New frontiers of land and water commodification: socioâ€environmental controversies of largeâ€scale land acquisitions. Land Degradation and Development, 2017, 28, 2234-2244.	3.9	52
25	Impact of Historical Changes in Coarse Cereals Consumption in India on Micronutrient Intake and Anemia Prevalence. Food and Nutrition Bulletin, 2018, 39, 377-392.	1.4	51
26	Impact of transnational land acquisitions on local food security and dietary diversity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	51
27	A global reference database of crowdsourced cropland data collected using the Geo-Wiki platform. Scientific Data, 2017, 4, 170136.	5.3	46
28	The green and blue crop water requirement WATNEEDS model and its global gridded outputs. Scientific Data, 2020, 7, 273.	5.3	45
29	Environmental consequences of oil production from oil sands. Earth's Future, 2017, 5, 158-170.	6.3	43
30	Food Inequality, Injustice, and Rights. BioScience, 2019, 69, 180-190.	4.9	43
31	Historical trade-offs of livestock's environmental impacts. Environmental Research Letters, 2015, 10, 125013.	5.2	41
32	Understanding dietary and staple food transitions in China from multiple scales. PLoS ONE, 2018, 13, e0195775.	2.5	40
33	Livestock intensification and the influence of dietary change: A calorie-based assessment of competition for crop production. Science of the Total Environment, 2015, 538, 817-823.	8.0	39
34	The global land rush and climate change. Earth's Future, 2015, 3, 298-311.	6.3	37
35	Water Savings of Crop Redistribution in the United States. Water (Switzerland), 2017, 9, 83.	2.7	35
36	Spatial analysis of energy use and GHG emissions from cereal production in India. Science of the Total Environment, 2019, 654, 841-849.	8.0	35

#	Article	IF	Citations
37	India has natural resource capacity to achieve nutrition security, reduce health risks and improve environmental sustainability. Nature Food, 2020, 1, 631-639.	14.0	32
38	Inclusion, Transparency, and Enforcement: How the EU-Mercosur Trade Agreement Fails the Sustainability Test. One Earth, 2020, 3, 268-272.	6.8	31
39	Crop harvests for direct food use insufficient to meet the UN's food security goal. Nature Food, 2022, 3, 367-374.	14.0	31
40	Diversified crop rotations enhance groundwater and economic sustainability of food production. Food and Energy Security, 2021, 10, e311.	4.3	30
41	Reducing water scarcity by improving water productivity in the United States. Environmental Research Letters, 2020, 15, 094033.	5.2	29
42	Sustaining food self-sufficiency of a nation: The case of Sri Lankan rice production and related water and fertilizer demands. Ambio, 2016, 45, 302-312.	5.5	25
43	Competition for water induced by transnational land acquisitions for agriculture. Nature Communications, 2022, 13, 505.	12.8	24
44	Climate change and large-scale land acquisitions in Africa: Quantifying the future impact on acquired water resources. Advances in Water Resources, 2016, 94, 231-237.	3.8	21
45	Ancient water supports today's energy needs. Earth's Future, 2017, 5, 515-519.	6.3	9
46	Oil palm cultivation can be expanded while sparing biodiversity in India. Nature Food, 2021, 2, 442-447.	14.0	8
47	Largeâ€scale land acquisition as a potential driver of slope instability. Land Degradation and Development, 2021, 32, 1773-1785.	3.9	6
48	Sustainable Pathways for Meeting Future Food Demand. , 2019, , 14-20.		5
49	Accounting for re-exports substantially reduces China's virtual water demand through agricultural trade. Environmental Research Letters, 2021, 16, 045002.	5.2	5
50	Culturally appropriate shifts in staple grain consumption can improve multiple sustainability outcomes. Environmental Research Letters, 2021, 16, 125006.	5.2	3
51	Ecohydrology of Agroecosystems: Interactions Between Local and Global Processes. , 2019, , 511-532.		1
52	Multidimensional Framework for Achieving Sustainable and Resilient Food Systems in Nigeria. , 2018, , 1-23.		0
53	A systems lens to evaluate the compound human health impacts of anthropogenic activities. One Earth, 2021, 4, 1233-1247.	6.8	0
54	Multidimensional Framework for Achieving Sustainable and Resilient Food Systems in Nigeria. , 2020, , 1137-1159.		0