
John Georgiou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9337688/publications.pdf Version: 2024-02-01

JOHN GEORGIOU

#	Article	IF	CITATIONS
1	The Receptor Tyrosine Kinase EphB2 Regulates NMDA-Dependent Synaptic Function. Neuron, 2001, 32, 1041-1056.	8.1	297
2	Control of Vertebrate Skeletal Mineralization by Polyphosphates. PLoS ONE, 2009, 4, e5634.	2.5	172
3	NCS-1 in the Dentate Gyrus Promotes Exploration, Synaptic Plasticity, and Rapid Acquisition of Spatial Memory. Neuron, 2009, 63, 643-656.	8.1	170
4	Synaptic regulation of glial protein expression in vivo. Neuron, 1994, 12, 443-455.	8.1	102
5	Disruption of the endocytic protein HIP1 results in neurological deficits and decreased AMPA receptor trafficking. EMBO Journal, 2003, 22, 3254-3266.	7.8	102
6	Nck adaptor proteins control the organization of neuronal circuits important for walking. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20973-20978.	7.1	90
7	Autism-Misregulated elF4G Microexons Control Synaptic Translation and Higher Order Cognitive Functions. Molecular Cell, 2020, 77, 1176-1192.e16.	9.7	69
8	The Role of Calcium-Permeable AMPARs in Long-Term Potentiation at Principal Neurons in the Rodent Hippocampus. Frontiers in Synaptic Neuroscience, 2018, 10, 42.	2.5	68
9	Oligomeric Size of the M2 Muscarinic Receptor in Live Cells as Determined by Quantitative Fluorescence Resonance Energy Transfer. Journal of Biological Chemistry, 2010, 285, 16723-16738.	3.4	63
10	Huntingtin-Interacting Protein 1 Influences Worm and Mouse Presynaptic Function and Protects <i>Caenorhabditis elegans</i> Neurons against Mutant Polyglutamine Toxicity. Journal of Neuroscience, 2007, 27, 11056-11064.	3.6	61
11	N-WASp is required for Schwann cell cytoskeletal dynamics, normal myelin gene expression and peripheral nerve myelination. Development (Cambridge), 2011, 138, 1329-1337.	2.5	59
12	Muscarinic Control of Cytoskeleton in Perisynaptic Clia. Journal of Neuroscience, 1999, 19, 3836-3846.	3.6	57
13	Specific Inhibition of Phosphodiesterase-4B Results in Anxiolysis and Facilitates Memory Acquisition. Neuropsychopharmacology, 2016, 41, 1080-1092.	5.4	53
14	Nestin Is Not Essential for Development of the CNS But Required for Dispersion of Acetylcholine Receptor Clusters at the Area of Neuromuscular Junctions. Journal of Neuroscience, 2011, 31, 11547-11552.	3.6	45
15	Colocation and role of polyphosphates and alkaline phosphatase in apatite biomineralization of elasmobranch tesserae. Acta Biomaterialia, 2014, 10, 3899-3910.	8.3	45
16	A far-red emitting probe for unambiguous detection of mobile zinc in acidic vesicles and deep tissue. Chemical Science, 2015, 6, 1944-1948.	7.4	42
17	NMDA Receptor Function and NMDA Receptor-Dependent Phosphorylation of Huntingtin Is Altered by the Endocytic Protein HIP1. Journal of Neuroscience, 2007, 27, 2298-2308.	3.6	41
18	Functional expression of the rat pancreatic islet glucose-dependent insulinotropic polypeptide receptor: ligand binding and intracellular signaling properties. Endocrinology, 1995, 136, 4629-4639.	2.8	40

John Georgiou

#	Article	IF	CITATIONS
19	A cautionary (spectral) tail: red-shifted fluorescence by DAPI–DAPI interactions. Biochemical Society Transactions, 2016, 44, 46-49.	3.4	39
20	Two-photon imaging of Zn ²⁺ dynamics in mossy fiber boutons of adult hippocampal slices. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6786-6791.	7.1	31
21	Strength of synaptic transmission at neuromuscular junction of crustaceans and insects in relation to calcium entry. Invertebrate Neuroscience, 1997, 3, 81-87.	1.8	29
22	Non-myelin-forming perisynaptic Schwann cells express protein zero and myelin-associated glycoprotein. , 1999, 27, 101-109.		28
23	A Co-operative Regulation of Neuronal Excitability by UNC-7 Innexin and NCA/NALCN Leak Channel. Molecular Brain, 2011, 4, 16.	2.6	28
24	PKA drives an increase in AMPA receptor unitary conductance during LTP in the hippocampus. Nature Communications, 2021, 12, 413.	12.8	27
25	Imaging of Calcium in Drosophila Larval Motor Nerve Terminals. Journal of Neurophysiology, 1997, 78, 3465-3467.	1.8	26
26	Self-directed exploration provides a Ncs1-dependent learning bonus. Scientific Reports, 2015, 5, 17697.	3.3	26
27	Novel EP4 Receptor Agonist-Bisphosphonate Conjugate Drug (C1) Promotes Bone Formation and Improves Vertebral Mechanical Properties in the Ovariectomized Rat Model of Postmenopausal Bone Loss. Journal of Bone and Mineral Research, 2015, 30, 670-680.	2.8	23
28	Defective place cell activity in nociceptin receptor knockout mice with elevated NMDA receptor-dependent long-term potentiation. Journal of Physiology, 2005, 565, 579-591.	2.9	22
29	On the Role of Calcium-Permeable AMPARs in Long-Term Potentiation and Synaptic Tagging in the Rodent Hippocampus. Frontiers in Synaptic Neuroscience, 2019, 11, 4.	2.5	19
30	Neurons Refine the Caenorhabditis elegans Body Plan by Directing Axial Patterning by Wnts. PLoS Biology, 2013, 11, e1001465.	5.6	16
31	A 3D scanning confocal imaging method measures pit volume and captures the role of Rac in osteoclast function. Bone, 2012, 51, 145-152.	2.9	15
32	The Probability of Neurotransmitter Release Governs AMPA Receptor Trafficking via Activity-Dependent Regulation of mGluR1 Surface Expression. Cell Reports, 2018, 25, 3631-3646.e3.	6.4	13
33	Multiple roles of GluN2D-containing NMDA receptors in short-term potentiation and long-term potentiation in mouse hippocampal slices. Neuropharmacology, 2021, 201, 108833.	4.1	10
34	Promiscuous and Reversible Blocker of Presynaptic Calcium Channels in Frog and Crayfish Neuromuscular Junctions From Phoneutria nigriventer Spider Venom. Journal of Neurophysiology, 2003, 90, 3529-3537.	1.8	9
35	Mice lacking neuronal calcium sensor-1 show social and cognitive deficits. Behavioural Brain Research, 2020, 381, 112420.	2.2	9
36	Illuminating Relationships Between the Pre- and Post-synapse. Frontiers in Neural Circuits, 2020, 14, 9.	2.8	8

John Georgiou

#	Article	IF	CITATIONS
37	Further evidence that CP-AMPARs are critically involved in synaptic tag and capture at hippocampal CA1 synapses. Molecular Brain, 2021, 14, 26.	2.6	8
38	Myelin-Associated Glycoprotein Gene. , 2004, , 421-467.		8
39	Hippocampal place cell and inhibitory neuron activity in disrupted-in-schizophrenia-1 mutant mice: implications for working memory deficits. NPJ Schizophrenia, 2015, 1, 15011.	3.6	7
40	Differential sensitivity of three forms of hippocampal synaptic potentiation to depotentiation. Molecular Brain, 2019, 12, 30.	2.6	6
41	Optogenetic Manipulation of Postsynaptic cAMP Using a Novel Transgenic Mouse Line Enables Synaptic Plasticity and Enhances Depolarization Following Tetanic Stimulation in the Hippocampal Dentate Gyrus. Frontiers in Neural Circuits, 2020, 14, 24.	2.8	6
42	Selective Recruitment of Presynaptic and Postsynaptic Forms of mGluR-LTD. Frontiers in Synaptic Neuroscience, 2022, 14, .	2.5	6
43	(2 <i>S</i> ,6 <i>S</i>)- and (2 <i>R</i> ,6 <i>R</i>)-hydroxynorketamine inhibit the induction of NMDA receptor-dependent LTP at hippocampal CA1 synapses in mice. Brain and Neuroscience Advances, 2020, 4, 239821282095784.	3.4	5
44	The Hippocampus Is the Place to Be: Opioid Receptors and LTP. Cell Reports, 2019, 28, 1117-1118.	6.4	2
45	Specific Role for GSK3α in Limiting Long-Term Potentiation in CA1 Pyramidal Neurons of Adult Mouse Hippocampus. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	2
46	Oligomeric Size of the M2 Muscarinic Receptor in the Plasma Membrane of Live Cells as Determined by Quantitative FRET. Biophysical Journal, 2009, 96, 169a.	0.5	0