Scott Waddell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9337681/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CMTr cap-adjacent 2′-O-ribose mRNA methyltransferases are required for reward learning and mRNA localization to synapses. Nature Communications, 2022, 13, 1209.	5.8	8
2	Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science, 2022, 375, eabk2432.	6.0	295
3	Selective dendritic localization of mRNA in Drosophila mushroom body output neurons. ELife, 2021, 10, .	2.8	7
4	A neuronal mechanism controlling the choice between feeding and sexual behaviors in Drosophila. Current Biology, 2021, 31, 4231-4245.e4.	1.8	35
5	Prior experience conditionally inhibits the expression of new learning in Drosophila. Current Biology, 2021, 31, 3490-3503.e3.	1.8	23
6	The impact of the gut microbiome on memory and sleep in <i>Drosophila</i> . Journal of Experimental Biology, 2021, 224, .	0.8	20
7	Transposon expression in the <i>Drosophila</i> brain is driven by neighboring genes and diversifies the neural transcriptome. Genome Research, 2020, 30, 1559-1569.	2.4	17
8	Input Connectivity Reveals Additional Heterogeneity of Dopaminergic Reinforcement in Drosophila. Current Biology, 2020, 30, 3200-3211.e8.	1.8	52
9	Complete Connectomic Reconstruction of Olfactory Projection Neurons in the Fly Brain. Current Biology, 2020, 30, 3183-3199.e6.	1.8	128
10	Memory, anticipation, action – working with Troy D. Zars. Journal of Neurogenetics, 2020, 34, 9-20.	0.6	0
11	Future perspectives of neurogenetics – in honor of Troy D. Zars (1967–2018). Journal of Neurogenetics, 2020, 34, 1-1.	0.6	2
12	Spaced Training Forms Complementary Long-Term Memories of Opposite Valence in Drosophila. Neuron, 2020, 106, 977-991.e4.	3.8	62
13	A single-cell transcriptomic atlas of the adult Drosophila ventral nerve cord. ELife, 2020, 9, .	2.8	104
14	Magnesium efflux from Drosophila Kenyon cells is critical for normal and diet-enhanced long-term memory. ELife, 2020, 9, .	2.8	5
15	The connectome of the adult Drosophila mushroom body provides insights into function. ELife, 2020, 9, .	2.8	231
16	A neural mechanism for deprivation state-specific expression of relevant memories in Drosophila. Nature Neuroscience, 2019, 22, 2029-2039.	7.1	63
17	Do the right thing: neural network mechanisms of memory formation, expression and update in Drosophila. Current Opinion in Neurobiology, 2018, 49, 51-58.	2.0	224
18	Integration of Parallel Opposing Memories Underlies Memory Extinction. Cell, 2018, 175, 709-722.e15.	13.5	176

SCOTT WADDELL

#	Article	IF	CITATIONS
19	Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics. ELife, 2018, 7, .	2.8	222
20	Re-evaluation of learned information in Drosophila. Nature, 2017, 544, 240-244.	13.7	128
21	Single molecule fluorescence in situ hybridisation for quantitating post-transcriptional regulation in Drosophila brains. Methods, 2017, 126, 166-176.	1.9	42
22	Resolving the prevalence of somatic transposition in Drosophila. ELife, 2017, 6, .	2.8	57
23	Aversive Learning and Appetitive Motivation Toggle Feed-Forward Inhibition in the Drosophila Mushroom Body. Neuron, 2016, 90, 1086-1099.	3.8	171
24	Memory-Relevant Mushroom Body Output Synapses Are Cholinergic. Neuron, 2016, 89, 1237-1247.	3.8	171
25	Sweet Taste and Nutrient Value Subdivide Rewarding Dopaminergic Neurons in Drosophila. Current Biology, 2015, 25, 751-758.	1.8	200
26	Olfactory learning skews mushroom body output pathways to steer behavioral choice in Drosophila. Current Opinion in Neurobiology, 2015, 35, 178-184.	2.0	205
27	Activity of Defined Mushroom Body Output Neurons Underlies Learned Olfactory Behavior in Drosophila. Neuron, 2015, 86, 417-427.	3.8	297
28	Drosophila Learn Opposing Components of a Compound Food Stimulus. Current Biology, 2014, 24, 1723-1730.	1.8	90
29	Neural correlates of water reward in thirsty Drosophila. Nature Neuroscience, 2014, 17, 1536-1542.	7.1	189
30	Different Kenyon Cell Populations Drive Learned Approach and Avoidance in Drosophila. Neuron, 2013, 79, 945-956.	3.8	104
31	Shocking Revelations and Saccharin Sweetness in the Study of Drosophila Olfactory Memory. Current Biology, 2013, 23, R752-R763.	1.8	62
32	Reinforcement signalling in Drosophila; dopamine does it all after all. Current Opinion in Neurobiology, 2013, 23, 324-329.	2.0	226
33	Transposition-Driven Genomic Heterogeneity in the <i>Drosophila</i> Brain. Science, 2013, 340, 91-95.	6.0	212
34	Layered reward signalling through octopamine and dopamine in Drosophila. Nature, 2012, 492, 433-437.	13.7	495
35	Remembering Nutrient Quality of Sugar in Drosophila. Current Biology, 2011, 21, 746-750.	1.8	165
36	A Pair of Inhibitory Neurons Are Required to Sustain Labile Memory in the Drosophila Mushroom Body. Current Biology, 2011, 21, 855-861.	1.8	116

SCOTT WADDELL

#	Article	IF	CITATIONS
37	Dopamine reveals neural circuit mechanisms of fly memory. Trends in Neurosciences, 2010, 33, 457-464.	4.2	146
38	A Neural Circuit Mechanism Integrating Motivational State with Memory Expression in Drosophila. Cell, 2009, 139, 416-427.	13.5	484
39	Learned Odor Discrimination in Drosophila without Combinatorial Odor Maps in the Antennal Lobe. Current Biology, 2008, 18, 1668-1674.	1.8	35
40	Rapid Consolidation to a <i>radish</i> and Protein Synthesis-Dependent Long-Term Memory after Single-Session Appetitive Olfactory Conditioning in <i>Drosophila</i> . Journal of Neuroscience, 2008, 28, 3103-3113.	1.7	230
41	Sequential Use of Mushroom Body Neuron Subsets during Drosophila Odor Memory Processing. Neuron, 2007, 53, 103-115.	3.8	355
42	Drosophila Dorsal Paired Medial Neurons Provide a General Mechanism for Memory Consolidation. Current Biology, 2006, 16, 1524-1530.	1.8	100
43	The Drosophila radish gene encodes a protein required for anesthesia-resistant memory. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17496-17500.	3.3	56
44	Courtship Learning: Scent of a Woman. Current Biology, 2005, 15, R88-R90.	1.8	1
45	Drosophila DPM Neurons Form a Delayed and Branch-Specific Memory Trace after Olfactory Classical Conditioning. Cell, 2005, 123, 945-957.	13.5	134
46	Diverse Odor-Conditioned Memories Require Uniquely Timed Dorsal Paired Medial Neuron Output. Neuron, 2004, 44, 521-533.	3.8	120
47	Protein phosphatase 1 and memory: practice makes PP1 imperfect?. Trends in Neurosciences, 2003, 26, 117-119.	4.2	6
48	Forgetting Those Painful Moments. Neuron, 2002, 35, 815-817.	3.8	4
49	The amnesiac Gene Product Is Expressed in Two Neurons in the Drosophila Brain that Are Critical for Memory. Cell, 2000, 103, 805-813.	13.5	290