Alexander D Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9337539/publications.pdf

Version: 2024-02-01

56 papers 6,321 citations

126708 33 h-index 54 g-index

58 all docs 58 docs citations

58 times ranked 5643 citing authors

#	Article	IF	Citations
1	Multiple molecular events underlie stochastic switching between 2 heritable cell states in fungi. PLoS Biology, 2022, 20, e3001657.	2.6	3
2	Lineage-specific selection and the evolution of virulence in the <i>Candida</i> clade. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
3	Evolution of the complex transcription network controlling biofilm formation in Candida species. ELife, 2021, 10, .	2.8	25
4	A Screen for Small Molecules to Target Candida albicans Biofilms. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /Ov	verlock 10 1.5	Tf 50 622 Td (
5	Protein-coding changes preceded cis-regulatory gains in a newly evolved transcription circuit. Science, 2020, 367, 96-100.	6.0	15
6	An Opaque Cell-Specific Expression Program of Secreted Proteases and Transporters Allows Cell-Type Cooperation in <i>Candida albicans</i>	1.2	6
7	Combination of Antifungal Drugs and Protease Inhibitors Prevent Candida albicans Biofilm Formation and Disrupt Mature Biofilms. Frontiers in Microbiology, 2020, 11, 1027.	1.5	34
8	A Selective Serotonin Reuptake Inhibitor, a Proton Pump Inhibitor, and Two Calcium Channel Blockers Inhibit Candida albicans Biofilms. Microorganisms, 2020, 8, 756.	1.6	9
9	Candida albicans white and opaque cells exhibit distinct spectra of organ colonization in mouse models of infection. PLoS ONE, 2019, 14, e0218037.	1.1	16
10	Genetic Modification of Closely Related Candida Species. Frontiers in Microbiology, 2019, 10, 357.	1.5	15
11	A population shift between two heritable cell types of the pathogen <i>Candida albicans</i> is based both on switching and selective proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26918-26924.	3.3	10
12	Development and regulation of single- and multi-species Candida albicans biofilms. Nature Reviews Microbiology, 2018, 16, 19-31.	13.6	405
13	Intrinsic cooperativity potentiates parallel cis-regulatory evolution. ELife, 2018, 7, .	2.8	19
14	Sensitivity of White and Opaque Candida albicans Cells to Antifungal Drugs. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	9
15	Assessment and Optimizations of Candida albicans <i>In Vitro</i> Biofilm Assays. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	55
16	How transcription circuits explore alternative architectures while maintaining overall circuit output. Genes and Development, 2017, 31, 1397-1405.	2.7	29
17	The rewiring of transcription circuits in evolution. Current Opinion in Genetics and Development, 2017, 47, 121-127.	1.5	49
18	Gene regulatory network plasticity predates a switch in function of a conserved transcription regulator. ELife, 2017, 6, .	2.8	46

#	Article	IF	Citations
19	PhyloBot: A Web Portal for Automated Phylogenetics, Ancestral Sequence Reconstruction, and Exploration of Mutational Trajectories. PLoS Computational Biology, 2016, 12, e1004976.	1.5	43
20	Global Identification of Biofilm-Specific Proteolysis in Candida albicans. MBio, 2016, 7, .	1.8	63
21	Phenotypic Profiling Reveals that Candida albicans Opaque Cells Represent a Metabolically Specialized Cell State Compared to Default White Cells. MBio, 2016, 7, .	1.8	43
22	Identification and Characterization of Wor4, a New Transcriptional Regulator of White-Opaque Switching. G3: Genes, Genomes, Genetics, 2016, 6, 721-729.	0.8	48
23	Systematic Genetic Screen for Transcriptional Regulators of the <i>Candida albicans</i> White-Opaque Switch. Genetics, 2016, 203, 1679-1692.	1.2	33
24	Ssn6 Defines a New Level of Regulation of White-Opaque Switching in Candida albicans and Is Required For the Stochasticity of the Switch. MBio, 2016, 7, e01565-15.	1.8	33
25	Transcriptional rewiring over evolutionary timescales changes quantitative and qualitative properties of gene expression. ELife, 2016, 5, .	2.8	54
26	How Transcription Networks Evolve and Produce Biological Novelty. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 265-274.	2.0	31
27	An expanded regulatory network temporally controls <scp><i>C</i></scp> <i>andida albicans</i> biofilm formation. Molecular Microbiology, 2015, 96, 1226-1239.	1.2	140
28	Finding a Missing Gene: <i>EFG1</i> Regulates Morphogenesis in <i>Candida tropicalis</i> Genes, Genomes, Genetics, 2015, 5, 849-856.	0.8	40
29	Intersecting transcription networks constrain gene regulatory evolution. Nature, 2015, 523, 361-365.	13.7	72
30	Making Sense of Transcription Networks. Cell, 2015, 161, 714-723.	13.5	133
31	<i>Candida albicans</i> Biofilms and Human Disease. Annual Review of Microbiology, 2015, 69, 71-92.	2.9	768
32	<i>N</i> -Acetylglucosamine-Induced Cell Death in Candida albicans and Its Implications for Adaptive Mechanisms of Nutrient Sensing in Yeasts. MBio, 2015, 6, e01376-15.	1.8	35
33	A Histone Deacetylase Complex Mediates Biofilm Dispersal and Drug Resistance in Candida albicans. MBio, 2014, 5, e01201-14.	1.8	70
34	How duplicated transcription regulators can diversify to govern the expression of nonoverlapping sets of genes. Genes and Development, 2014, 28, 1272-1277.	2.7	48
35	Mucins Suppress Virulence Traits of Candida albicans. MBio, 2014, 5, e01911.	1.8	95
36	Ancestral resurrection reveals evolutionary mechanisms of kinase plasticity. ELife, 2014, 3, .	2.8	53

#	Article	IF	CITATIONS
37	Regulatory Circuits That Enable Proliferation of the Fungus Candida albicans in a Mammalian Host. PLoS Pathogens, 2013, 9, e1003780.	2.1	30
38	Protein Modularity, Cooperative Binding, and Hybrid Regulatory States Underlie Transcriptional Network Diversification. Cell, 2012, 151, 80-95.	13.5	89
39	Extensive DNA-binding specificity divergence of a conserved transcription regulator. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7493-7498.	3.3	72
40	Evolution of Transcription Networks â€" Lessons from Yeasts. Current Biology, 2010, 20, R746-R753.	1.8	93
41	Intercalation of a new tier of transcription regulation into an ancient circuit. Nature, 2010, 468, 959-963.	13.7	74
42	Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nature Genetics, 2010, 42, 590-598.	9.4	632
43	Genetics and Molecular Biology in Candida albicans. Methods in Enzymology, 2010, 470, 737-758.	0.4	76
44	The Evolution of Combinatorial Gene Regulation in Fungi. PLoS Biology, 2008, 6, e38.	2.6	220
45	Evolution of alternative transcriptional circuits with identical logic. Nature, 2006, 443, 415-420.	13.7	250
46	Strains and Strategies for Large-Scale Gene Deletion Studies of the Diploid Human Fungal Pathogen Candida albicans. Eukaryotic Cell, 2005, 4, 298-309.	3.4	530
47	The biology of mating in Candida albicans. Nature Reviews Microbiology, 2003, 1, 106-116.	13.6	119
48	Evolution of a Combinatorial Transcriptional Circuit. Cell, 2003, 115, 389-399.	13.5	232
49	White-Opaque Switching in Candida albicans Is Controlled by Mating-Type Locus Homeodomain Proteins and Allows Efficient Mating. Cell, 2002, 110, 293-302.	13.5	504
50	Development of Streptococcus thermophilus lacZ as a reporter gene for Candida albicans. Microbiology (United Kingdom), 2001, 147, 1189-1195.	0.7	76
51	Identification and Characterization of <i>TUP1</i> Regulated Genes in <i>Candida albicans</i> Genetics, 2000, 156, 31-44.	1.2	283
52	Identification of a Mating Type-Like Locus in the Asexual Pathogenic Yeast Candida albicans. Science, 1999, 285, 1271-1275.	6.0	351
53	Crystallization and preliminary X-ray diffraction studies of an a1/ \hat{l} ±2/DNA ternary complex. Proteins: Structure, Function and Bioinformatics, 1995, 21, 161-164.	1.5	7
54	Transcriptional repression directed by the yeast α2 protein in vitro. Nature, 1994, 370, 309-311.	13.7	121

#	Article	IF	CITATIONS
55	Rewiring Transcriptional Circuitry: Mating-Type Regulation in Saccharomyces cerevisiae and Candida albicans as a Model for Evolution., 0,, 75-89.		2
56	Mating and Parasexual Genetics in Candida albicans. , 0, , 71-88.		0