
Lawrence W Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9336886/publications.pdf Version: 2024-02-01

LAWDENCE W MILLER

#	Article	IF	CITATIONS
1	Förster resonance energy transfer biosensors for fluorescence and time-gated luminescence analysis of rac1 activity. Scientific Reports, 2022, 12, 5291.	1.6	5
2	Lanthanide-based resonance energy transfer biosensors for live-cell applications. Methods in Enzymology, 2021, 651, 291-311.	0.4	3
3	Single-Chain Lanthanide Luminescence Biosensors for Cell-Based Imaging and Screening of Protein-Protein Interactions. IScience, 2020, 23, 101533.	1.9	9
4	Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis. Nature Medicine, 2019, 25, 690-700.	15.2	102
5	Time-Gated Luminescence Detection of Enzymatically Produced Hydrogen Sulfide: Design, Synthesis, and Application of a Lanthanide-Based Probe. Inorganic Chemistry, 2018, 57, 681-688.	1.9	26
6	Frontispiece: Timeâ€Gated Detection of Cystathionine Î³â€Łyase Activity and Inhibition with a Selective, Luminogenic Hydrogen Sulfide Sensor. Chemistry - A European Journal, 2017, 23, .	1.7	0
7	Efficient route to pre-organized and linear polyaminopolycarboxylates: Cy-TTHA, Cy-DTPA and mono/di- reactive, tert -butyl protected TTHA/Cy-TTHA. Tetrahedron Letters, 2017, 58, 1441-1444.	0.7	3
8	Time Gated Luminescence Imaging of Immunolabeled Human Tissues. Analytical Chemistry, 2017, 89, 12713-12719.	3.2	10
9	Timeâ€Gated Detection of Cystathionine γâ€Lyase Activity and Inhibition with a Selective, Luminogenic Hydrogen Sulfide Sensor. Chemistry - A European Journal, 2017, 23, 752-756.	1.7	17
10	Ratiometric QD-FRET Sensing of Aqueous H ₂ S in Vitro. Analytical Chemistry, 2016, 88, 6050-6056.	3.2	47
11	Brightly Luminescent and Kinetically Inert Lanthanide Bioprobes Based on Linear and Preorganized Chelators. Bioconjugate Chemistry, 2016, 27, 2540-2548.	1.8	17
12	In Vitro Detection of Hypoxia Using a Ratiometric Quantum Dot-Based Oxygen Sensor. ACS Sensors, 2016, 1, 1244-1250.	4.0	33
13	Time-gated FRET nanoassemblies for rapid and sensitive intra- and extracellular fluorescence imaging. Science Advances, 2016, 2, e1600265.	4.7	56
14	Cytoplasmic Delivery and Selective, Multicomponent Labeling with Oligoarginine-Linked Protein Tags. Bioconjugate Chemistry, 2015, 26, 460-465.	1.8	17
15	Evaluating the Performance of Time-Gated Live-Cell Microscopy with Lanthanide Probes. Biophysical Journal, 2015, 109, 240-248.	0.2	34
16	Lanthanide-Based Imaging of Protein–Protein Interactions in Live Cells. Inorganic Chemistry, 2014, 53, 1839-1853.	1.9	65
17	How to Build a Timeâ€Gated Luminescence Microscope. Current Protocols in Cytometry, 2014, 67, 2.22.1-2.22.36.	3.7	23
18	Time-Resolved Luminescence Resonance Energy Transfer Imaging of Protein–Protein Interactions in Living Cells. Methods in Enzymology, 2012, 505, 329-345.	0.4	14

LAWRENCE W MILLER

#	Article	IF	CITATIONS
19	Time-gated luminescence microscopy with responsive nonmetal probes for mapping activity of protein kinases in living cells. Chemical Communications, 2012, 48, 8595.	2.2	19
20	Cellâ€Penetrating Peptides as Delivery Vehicles for a Proteinâ€Targeted Terbium Complex. Chemistry - A European Journal, 2012, 18, 10825-10829.	1.7	32
21	An Adaptable Luminescence Resonance Energy Transfer Assay for Measuring and Screening Protein–Protein Interactions and their Inhibition ChemBioChem, 2012, 13, 553-558.	1.3	8
22	Luminescent Trimethoprim–Polyaminocarboxylate Lanthanide Complex Conjugates for Selective Protein Labeling and Time-Resolved Bioassays. Bioconjugate Chemistry, 2011, 22, 1402-1409.	1.8	27
23	Efficient functionalization of aqueous CdSe/ZnS nanocrystals using small-molecule chemical activators. Chemical Communications, 2011, 47, 3532.	2.2	15
24	Timeâ€resolved microscopy for imaging lanthanide luminescence in living cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2010, 77A, 1113-1125.	1.1	68
25	Time-resolved luminescence resonance energy transfer imaging of protein–protein interactions in living cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13582-13587.	3.3	137
26	Cytoskeletal coherence requires myosin-IIA contractility. Journal of Cell Science, 2010, 123, 413-423.	1.2	179
27	Selective Antifolates for Chemically Labeling Proteins in Mammalian Cells. ChemBioChem, 2009, 10, 1462-1464.	1.3	0
28	Luminescent Terbium Protein Labels for Timeâ€Resolved Microscopy and Screening. Angewandte Chemie - International Edition, 2009, 48, 4990-4992.	7.2	72
29	Conditional Glycosylation in Eukaryotic Cells Using a Biocompatible Chemical Inducer of Dimerization. Journal of the American Chemical Society, 2008, 130, 13186-13187.	6.6	55
30	Optimized Fluorescent Trimethoprim Derivatives for in vivo Protein Labeling. ChemBioChem, 2007, 8, 767-774.	1.3	89
31	An orthogonal dexamethasone–trimethoprim yeast three-hybrid system. Analytical Biochemistry, 2007, 363, 160-162.	1.1	23
32	Selective chemical labeling of proteins in living cells. Current Opinion in Chemical Biology, 2005, 9, 56-61.	2.8	132
33	In vivo protein labeling with trimethoprim conjugates: a flexible chemical tag. Nature Methods, 2005, 2, 255-257.	9.0	282
34	Methotrexate Conjugates: A Molecular In Vivo Protein Tag. Angewandte Chemie - International Edition, 2004, 43, 1672-1675.	7.2	99
35	(Photo)electrochemical behavior of selected organic compounds on TiO2 electrodes. Overall relevance to heterogeneous photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 130, 145-156.	2.0	27
36	Photocatalyst-coated acrylic waveguides for oxidation of organic compounds. Studies in Surface Science and Catalysis, 2000, , 1925-1930.	1.5	5

#	Article	IF	CITATIONS
37	Mesoporous Metal Oxide Semiconductor-Clad Waveguides. Journal of Physical Chemistry B, 1999, 103, 8490-8492.	1.2	10
38	Titanium Dioxide-Coated Silica Waveguides for the Photocatalytic Oxidation of Formic Acid in Water. Environmental Science & Technology, 1999, 33, 2070-2075.	4.6	60
39	Fiber-Mediated Titanium Dioxide Photocatalysis. Journal of Advanced Oxidation Technologies, 1998, 3, .	0.5	2
40	Using the Bacteriophage MS2 Coat Protein–RNA Binding Interaction to Visualize RNA in Living Cells. , 0, , 163-174.		1
41	ACT/SNAP-Tag: A Versatile Tag for Covalent Protein Labeling. , 0, , 89-107.		2