
Jolanda M Smit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/933687/publications.pdf Version: 2024-02-01

IOLANDA M SMIT

#	Article	IF	CITATIONS
1	Development of a Highly Protective Combination Monoclonal Antibody Therapy against Chikungunya Virus. PLoS Pathogens, 2013, 9, e1003312.	4.7	228
2	Characterization of the Early Events in Dengue Virus Cell Entry by Biochemical Assays and Single-Virus Tracking. Journal of Virology, 2007, 81, 12019-12028.	3.4	225
3	Broadly Neutralizing Alphavirus Antibodies Bind an Epitope on E2 and Inhibit Entry and Egress. Cell, 2015, 163, 1095-1107.	28.9	157
4	Neuroinvasive flavivirus infections. Reviews in Medical Virology, 2012, 22, 69-87.	8.3	148
5	Low-pH-Dependent Fusion of Sindbis Virus with Receptor-Free Cholesterol- and Sphingolipid-Containing Liposomes. Journal of Virology, 1999, 73, 8476-8484.	3.4	138
6	Functional importance of dengue virus maturation: infectious properties of immature virions. Journal of General Virology, 2008, 89, 3047-3051.	2.9	129
7	Antibody-Dependent Enhancement of Dengue Virus Infection in Primary Human Macrophages; Balancing Higher Fusion against Antiviral Responses. Scientific Reports, 2016, 6, 29201.	3.3	106
8	Early Events in Chikungunya Virus Infection—From Virus CellBinding to Membrane Fusion. Viruses, 2015, 7, 3647-3674.	3.3	99
9	Molecular Mechanisms Involved in Antibodyâ€Đependent Enhancement of Dengue Virus Infection in Humans. Traffic, 2013, 14, 25-35.	2.7	95
10	The Complexity of a Dengue Vaccine: A Review of the Human Antibody Response. PLoS Neglected Tropical Diseases, 2015, 9, e0003749.	3.0	86
11	Dynamics of Chikungunya Virus Cell Entry Unraveled by Single-Virus Tracking in Living Cells. Journal of Virology, 2016, 90, 4745-4756.	3.4	78
12	Adaptation of Alphaviruses to Heparan Sulfate: Interaction of Sindbis and Semliki Forest Viruses with Liposomes Containing Lipid-Conjugated Heparin. Journal of Virology, 2002, 76, 10128-10137.	3.4	76
13	Recent advances in antiviral drug development towards dengue virus. Current Opinion in Virology, 2020, 43, 9-21.	5.4	70
14	Structure of Acidic pH Dengue Virus Showing the Fusogenic Clycoprotein Trimers. Journal of Virology, 2015, 89, 743-750.	3.4	56
15	Tomatidine, a novel antiviral compound towards dengue virus. Antiviral Research, 2019, 161, 90-99.	4.1	51
16	Complex interaction between dengue virus replication and expression of miRNA-133a. BMC Infectious Diseases, 2015, 16, 29.	2.9	48
17	Resveratrol and Pterostilbene Inhibit SARS-CoV-2 Replication in Air–Liquid Interface Cultured Human Primary Bronchial Epithelial Cells. Viruses, 2021, 13, 1335.	3.3	47
18	Differential Expression of Toll-like Receptors in Dendritic Cells of Patients with Dengue during Early and Late Acute Phases of the Disease. PLoS Neglected Tropical Diseases, 2013, 7, e2060.	3.0	45

Jolanda M Smit

#	Article	IF	CITATIONS
19	Tomatidine, a natural steroidal alkaloid shows antiviral activity towards chikungunya virus in vitro. Scientific Reports, 2020, 10, 6364.	3.3	44
20	Human macrophages differentiated in the presence of vitamin D3 restrict dengue virus infection and innate responses by downregulating mannose receptor expression. PLoS Neglected Tropical Diseases, 2017, 11, e0005904.	3.0	44
21	MicroRNA profiling of human primary macrophages exposed to dengue virus identifies miRNA-3614-5p as antiviral and regulator of ADAR1 expression. PLoS Neglected Tropical Diseases, 2017, 11, e0005981.	3.0	43
22	Antibodies against the Envelope Glycoprotein Promote Infectivity of Immature Dengue Virus Serotype 2. PLoS ONE, 2012, 7, e29957.	2.5	41
23	Chikungunya virus fusion properties elucidated by single-particle and bulk approaches. Journal of General Virology, 2015, 96, 2122-2132.	2.9	40
24	How antibodies alter the cell entry pathway of dengue virus particles in macrophages. Scientific Reports, 2016, 6, 28768.	3.3	40
25	TLR2 on blood monocytes senses dengue virus infection and its expression correlates with disease pathogenesis. Nature Communications, 2020, 11, 3177.	12.8	40
26	Monitoring virus entry into living cells using DiD-labeled dengue virus particles. Methods, 2011, 55, 137-143.	3.8	37
27	Immature Dengue Virus Is Infectious in Human Immature Dendritic Cells via Interaction with the Receptor Molecule DC-SIGN. PLoS ONE, 2014, 9, e98785.	2.5	30
28	Role of autophagy during the replication and pathogenesis of common mosquito-borne flavi- and alphaviruses. Open Biology, 2019, 9, 190009.	3.6	27
29	Fusion of alphaviruses with liposomes is a non-leaky process. FEBS Letters, 2002, 521, 62-66.	2.8	26
30	Suramin Inhibits Chikungunya Virus Replication by Interacting with Virions and Blocking the Early Steps of Infection. Viruses, 2020, 12, 314.	3.3	25
31	Dengue tropism for macrophages and dendritic cells: the host cell effect. Journal of General Virology, 2016, 97, 1531-1536.	2.9	25
32	Synthetic Peptides That Antagonize the Angiotensin-Converting Enzyme-2 (ACE-2) Interaction with SARS-CoV-2 Receptor Binding Spike Protein. Journal of Medicinal Chemistry, 2022, 65, 2836-2847.	6.4	22
33	Moxidectin and Ivermectin Inhibit SARS-CoV-2 Replication in Vero E6 Cells but Not in Human Primary Bronchial Epithelial Cells. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0154321.	3.2	19
34	Strategies employed by viruses to manipulate autophagy. Progress in Molecular Biology and Translational Science, 2020, 172, 203-237.	1.7	17
35	Antibody-dependent enhancement of dengue virus infection is inhibited by SA-17, a doxorubicin derivative. Antiviral Research, 2013, 100, 238-245.	4.1	15
36	Liposomes as Target Membranes in the Study of Virus Receptor Interaction and Membrane Fusion. Methods in Enzymology, 2003, 372, 374-392.	1.0	14

Jolanda M Smit

#	Article	IF	CITATIONS
37	Arthropod-Borne Flaviviruses and RNA Interference. Advances in Virus Research, 2013, 85, 91-111.	2.1	13
38	Antibodies against Immature Virions Are Not a Discriminating Factor for Dengue Disease Severity. PLoS Neglected Tropical Diseases, 2015, 9, e0003564.	3.0	11
39	Deacylation of the transmembrane domains of Sindbis virus envelope glycoproteins E1 and E2 does not affect low-pH-induced viral membrane fusion activity. FEBS Letters, 2001, 498, 57-61.	2.8	8
40	Serotonergic Drugs Inhibit Chikungunya Virus Infection at Different Stages of the Cell Entry Pathway. Journal of Virology, 2020, 94, .	3.4	8
41	Tomatidine reduces Chikungunya virus progeny release by controlling viral protein expression. PLoS Neglected Tropical Diseases, 2021, 15, e0009916.	3.0	8
42	Fusion and fission events regulate endosome maturation and viral escape. Scientific Reports, 2021, 11, 7845.	3.3	7
43	Chikungunya virus requires an intact microtubule network forÂefficient viral genome delivery. PLoS Neglected Tropical Diseases, 2020, 14, e0008469.	3.0	6
44	Regulation of innate immune responses in macrophages differentiated in the presence of vitamin D and infected with dengue virus 2. PLoS Neglected Tropical Diseases, 2021, 15, e0009873.	3.0	5
45	Posaconazole inhibits multiple steps of the alphavirus replication cycle. Antiviral Research, 2022, 197, 105223.	4.1	4
46	Cooperative Chikungunya Virus Membrane Fusion and Its Substoichiometric Inhibition by CHK-152 Antibody. Viruses, 2022, 14, 270.	3.3	0
47	Chikungunya virus requires an intact microtubule network for efficient viral genome delivery. , 2020, 14, e0008469.		0
48	Chikungunya virus requires an intact microtubule network for efficient viral genome delivery. , 2020, 14, e0008469.		0
49	Chikungunya virus requires an intact microtubule network for efficient viral genome delivery. , 2020, 14, e0008469.		0
50	Chikungunya virus requires an intact microtubule network for efficient viral genome delivery. , 2020, 14, e0008469.		0