List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9336809/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Starch Retrogradation: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety, 2015, 14, 568-585.                                                                                                 | 5.9 | 1,049     |
| 2  | Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility:<br>a review. Food and Function, 2013, 4, 1564.                                                                    | 2.1 | 464       |
| 3  | Effect of Acid Hydrolysis on Starch Structure and Functionality: A Review. Critical Reviews in Food<br>Science and Nutrition, 2015, 55, 1081-1097.                                                                       | 5.4 | 295       |
| 4  | Starch–lipid and starch–lipid–protein complexes: A comprehensive review. Comprehensive Reviews in<br>Food Science and Food Safety, 2020, 19, 1056-1079.                                                                  | 5.9 | 228       |
| 5  | Effect of fatty acids on functional properties of normal wheat and waxy wheat starches: A structural basis. Food Chemistry, 2016, 190, 285-292.                                                                          | 4.2 | 209       |
| 6  | High internal phase emulsions stabilized by starch nanocrystals. Food Hydrocolloids, 2018, 82, 230-238.                                                                                                                  | 5.6 | 183       |
| 7  | Alkali-Induced Changes in Functional Properties and <i>in Vitro</i> Digestibility of Wheat Starch: The Role of Surface Proteins and Lipids. Journal of Agricultural and Food Chemistry, 2014, 62, 3636-3643.             | 2.4 | 161       |
| 8  | Molecular order and functional properties of starches from three waxy wheat varieties grown in China. Food Chemistry, 2015, 181, 43-50.                                                                                  | 4.2 | 135       |
| 9  | New insights on the mechanism of acid degradation of pea starch. Carbohydrate Polymers, 2012, 87, 1941-1949.                                                                                                             | 5.1 | 120       |
| 10 | Mechanisms Underlying the Formation of Complexes between Maize Starch and Lipids. Journal of Agricultural and Food Chemistry, 2018, 66, 272-278.                                                                         | 2.4 | 117       |
| 11 | Structural Orders of Wheat Starch Do Not Determine the <i>In Vitro</i> Enzymatic Digestibility.<br>Journal of Agricultural and Food Chemistry, 2017, 65, 1697-1706.                                                      | 2.4 | 115       |
| 12 | Changes of multi-scale structure during mimicked DSC heating reveal the nature of starch gelatinization. Scientific Reports, 2016, 6, 28271.                                                                             | 1.6 | 112       |
| 13 | Insights into the Formation and Structures of Starch–Protein–Lipid Complexes. Journal of<br>Agricultural and Food Chemistry, 2017, 65, 1960-1966.                                                                        | 2.4 | 111       |
| 14 | Annealing improves paste viscosity and stability of starch. Food Hydrocolloids, 2017, 62, 203-211.                                                                                                                       | 5.6 | 109       |
| 15 | Applications of ionic liquids in starch chemistry: a review. Green Chemistry, 2020, 22, 2162-2183.                                                                                                                       | 4.6 | 101       |
| 16 | Effect of alkali treatment on structure and function of pea starch granules. Food Chemistry, 2012, 135, 1635-1642.                                                                                                       | 4.2 | 97        |
| 17 | Mechanisms of starch gelatinization during heating of wheat flour and its effect on inÂvitro starch digestibility. Food Hydrocolloids, 2018, 82, 370-378.                                                                | 5.6 | 95        |
| 18 | Effects of Chain Length and Degree of Unsaturation of Fatty Acids on Structure and in Vitro<br>Digestibility of Starch–Protein–Fatty Acid Complexes. Journal of Agricultural and Food Chemistry,<br>2018, 66, 1872-1880. | 2.4 | 93        |

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Structural and functional properties of starches from field peas. Food Chemistry, 2011, 126, 1546-1552.                                                                                            | 4.2 | 87        |
| 20 | A comparative study of annealing of waxy, normal and high-amylose maize starches: The role of amylose molecules. Food Chemistry, 2014, 164, 332-338.                                               | 4.2 | 87        |
| 21 | Granular structure and allomorph position in C-type Chinese yam starch granule revealed by SEM, 13C<br>CP/MAS NMR and XRD. Food Hydrocolloids, 2009, 23, 426-433.                                  | 5.6 | 82        |
| 22 | Molecular disassembly of rice and lotus starches during thermal processing and its effect on starch digestibility. Food and Function, 2016, 7, 1188-1195.                                          | 2.1 | 81        |
| 23 | Preparation and properties of halloysite nanotubes/plasticized Dioscorea opposita Thunb. starch composites. Carbohydrate Polymers, 2011, 83, 186-191.                                              | 5.1 | 76        |
| 24 | Structural and functional properties of starches from Chinese chestnuts. Food Hydrocolloids, 2015, 43, 568-576.                                                                                    | 5.6 | 76        |
| 25 | RS5 Produced More Butyric Acid through Regulating the Microbial Community of Human Gut<br>Microbiota. Journal of Agricultural and Food Chemistry, 2021, 69, 3209-3218.                             | 2.4 | 76        |
| 26 | Insights into molecular structure and digestion rate of oat starch. Food Chemistry, 2017, 220, 25-30.                                                                                              | 4.2 | 72        |
| 27 | Molecular mechanisms underlying the formation of starch-lipid complexes during simulated food processing: A dynamic structural analysis. Carbohydrate Polymers, 2020, 244, 116464.                 | 5.1 | 72        |
| 28 | Phase Transitions of Pea Starch over a Wide Range of Water Content. Journal of Agricultural and<br>Food Chemistry, 2012, 60, 6439-6446.                                                            | 2.4 | 67        |
| 29 | Phase transition and swelling behaviour of different starch granules over a wide range of water content. LWT - Food Science and Technology, 2014, 59, 597-604.                                     | 2.5 | 64        |
| 30 | New insights into loss of swelling power and pasting profiles of acid hydrolyzed starch granules.<br>Starch/Staerke, 2012, 64, 538-544.                                                            | 1.1 | 63        |
| 31 | Retrogradation enthalpy does not always reflect the retrogradation behavior of gelatinized starch.<br>Scientific Reports, 2016, 6, 20965.                                                          | 1.6 | 62        |
| 32 | Discovery of a low-glycaemic index potato and relationship with starch digestion <i>in vitro</i> .<br>British Journal of Nutrition, 2014, 111, 699-705.                                            | 1.2 | 59        |
| 33 | Thermal and rheological properties of brown flour from Indica rice. Journal of Cereal Science, 2016,<br>70, 270-274.                                                                               | 1.8 | 58        |
| 34 | Effects of particle size and water content during cooking on the physicochemical properties and inÂvitro starch digestibility of milled durum wheat grains. Food Hydrocolloids, 2018, 77, 445-453. | 5.6 | 58        |
| 35 | Effects of starch damage and yeast fermentation on acrylamide formation in bread. Food Control, 2017, 73, 230-236.                                                                                 | 2.8 | 57        |
| 36 | Structural Changes of Starch–Lipid Complexes during Postprocessing and Their Effect on In Vitro Enzymatic Digestibility. Journal of Agricultural and Food Chemistry, 2019, 67, 1530-1536.          | 2.4 | 55        |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Pea Starch Annealing: New Insights. Food and Bioprocess Technology, 2013, 6, 3564-3575.                                                                                                     | 2.6 | 53        |
| 38 | Multiscale Structural Changes of Wheat and Yam Starches during Cooking and Their Effect on in Vitro Enzymatic Digestibility. Journal of Agricultural and Food Chemistry, 2017, 65, 156-166. | 2.4 | 51        |
| 39 | New insight into starch retrogradation: The effect of short-range molecular order in gelatinized starch. Food Hydrocolloids, 2021, 120, 106921.                                             | 5.6 | 51        |
| 40 | Revisiting Mechanisms Underlying Digestion of Starches. Journal of Agricultural and Food Chemistry, 2019, 67, 8212-8226.                                                                    | 2.4 | 49        |
| 41 | Cloning, Expression, Purification, and Characterization of Cold-Adapted α-Amylase from<br>Pseudoalteromonas arctica GS230. Protein Journal, 2010, 29, 591-597.                              | 0.7 | 47        |
| 42 | Multi-scale structures and functional properties of starches from Indica hybrid, Japonica and waxy rice. International Journal of Biological Macromolecules, 2017, 102, 136-143.            | 3.6 | 47        |
| 43 | Toward a Better Understanding of Starch–Monoglyceride–Protein Interactions. Journal of<br>Agricultural and Food Chemistry, 2018, 66, 13253-13259.                                           | 2.4 | 47        |
| 44 | Effect of purple yam flour substitution for wheat flour on in vitro starch digestibility of wheat<br>bread. Food Chemistry, 2019, 284, 118-124.                                             | 4.2 | 45        |
| 45 | Mechanistic studies of starch retrogradation and its effects on starch gel properties. Food<br>Hydrocolloids, 2021, 120, 106914.                                                            | 5.6 | 45        |
| 46 | The semi-crystalline growth rings of C-type pea starch granule revealed by SEM and HR-TEM during acid hydrolysis. Carbohydrate Polymers, 2008, 74, 731-739.                                 | 5.1 | 43        |
| 47 | Gelatinization behavior of starch: Reflecting beyond the endotherm measured by differential scanning calorimetry. Food Chemistry, 2019, 284, 53-59.                                         | 4.2 | 43        |
| 48 | New insights into starch gelatinization by high pressure: Comparison with heat-gelatinization. Food<br>Chemistry, 2020, 318, 126493.                                                        | 4.2 | 41        |
| 49 | New insight into the interactions among starch, lipid and protein in model systems with different starches. Food Hydrocolloids, 2021, 112, 106323.                                          | 5.6 | 41        |
| 50 | Changes of starch during thermal processing of foods: Current status and future directions. Trends in Food Science and Technology, 2022, 119, 320-337.                                      | 7.8 | 41        |
| 51 | InÂvitro starch digestibility of rice flour is not affected by method of cooking. LWT - Food Science and<br>Technology, 2017, 84, 536-543.                                                  | 2.5 | 40        |
| 52 | Conformation and location of amorphous and semi-crystalline regions in C-type starch granules revealed by SEM, NMR and XRD. Food Chemistry, 2008, 110, 39-46.                               | 4.2 | 39        |
| 53 | The effect of NaCl on the formation of starch-lipid complexes. Food Chemistry, 2019, 299, 125133.                                                                                           | 4.2 | 37        |
| 54 | Effect of laboratory milling on properties of starches isolated from different flour millstreams of hard and soft wheat. Food Chemistry, 2015, 172, 504-514.                                | 4.2 | 36        |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Modification of Glutenin and Associated Changes in Digestibility Due to Methylglyoxal during Heat<br>Processing. Journal of Agricultural and Food Chemistry, 2019, 67, 10734-10743.            | 2.4 | 35        |
| 56 | A method for characterizing short-range molecular order in amorphous starch. Carbohydrate<br>Polymers, 2020, 242, 116405.                                                                      | 5.1 | 35        |
| 57 | Properties of starch from potatoes differing in glycemic index. Food and Function, 2014, 5, 2509-2515.                                                                                         | 2.1 | 33        |
| 58 | Drying methods used in starch isolation change properties of C-type chestnut (Castanea mollissima)<br>starches. LWT - Food Science and Technology, 2016, 73, 663-669.                          | 2.5 | 33        |
| 59 | Mechanisms underlying the effect of gluten and its hydrolysates on in vitro enzymatic digestibility of wheat starch. Food Hydrocolloids, 2021, 113, 106507.                                    | 5.6 | 33        |
| 60 | Physicochemical properties and inÂvitro digestibility of starches from field peas grown in China. LWT -<br>Food Science and Technology, 2015, 64, 829-836.                                     | 2.5 | 32        |
| 61 | New insights into gelatinization mechanisms of cereal endosperm starches. Scientific Reports, 2018, 8, 3011.                                                                                   | 1.6 | 32        |
| 62 | Effects of hydrothermal-alkali and freezing-thawing pre-treatments on modification of corn starch with octenyl succinic anhydride. Carbohydrate Polymers, 2017, 175, 361-369.                  | 5.1 | 31        |
| 63 | Studies on the morphological, thermal and crystalline properties of starches separated from medicinal plants. Journal of Food Engineering, 2006, 76, 420-426.                                  | 2.7 | 28        |
| 64 | Nature of thermal transitions of native and acid-hydrolysed pea starch: Does gelatinization really<br>happen?. Carbohydrate Polymers, 2012, 87, 1507-1514.                                     | 5.1 | 27        |
| 65 | Insights into structure and function of high pressure-modified starches with different crystalline polymorphs. International Journal of Biological Macromolecules, 2017, 102, 414-424.         | 3.6 | 26        |
| 66 | Dissolution of Maize Starch in Aqueous Ionic Liquids: The Role of Alkyl Chain Length of Cation and<br>Water:Ionic Liquid Ratio. ACS Sustainable Chemistry and Engineering, 2019, 7, 6898-6905. | 3.2 | 24        |
| 67 | Insights into structure-function relationships of starch from foxtail millet cultivars grown in<br>China. International Journal of Biological Macromolecules, 2020, 155, 1176-1183.            | 3.6 | 24        |
| 68 | Effect of dual modification by annealing and ultrahigh pressure on properties of starches with different polymorphs. Carbohydrate Polymers, 2017, 174, 549-557.                                | 5.1 | 23        |
| 69 | Effect of protein-fatty acid interactions on the formation of starch-lipid-protein complexes. Food<br>Chemistry, 2021, 364, 130390.                                                            | 4.2 | 23        |
| 70 | Effect of modified tapioca starches on the gelling properties of whey protein isolate. Food<br>Hydrocolloids, 2019, 93, 87-91.                                                                 | 5.6 | 22        |
| 71 | Revealing the mechanisms of starch amylolysis affected by tea catechins using surface plasmon resonance. International Journal of Biological Macromolecules, 2020, 145, 527-534.               | 3.6 | 22        |
| 72 | Starch Spherulites Prepared by a Combination of Enzymatic and Acid Hydrolysis of Normal Corn<br>Starch. Journal of Agricultural and Food Chemistry, 2018, 66, 6357-6363.                       | 2.4 | 21        |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Trypsin and chymotrypsin are necessary for in vitro enzymatic digestion of rice starch. RSC Advances, 2017, 7, 3660-3666.                                                                                                         | 1.7 | 20        |
| 74 | Effect of Drying Methods on Properties of Potato Flour and Noodles Made with Potato Flour. Foods, 2021, 10, 1115.                                                                                                                 | 1.9 | 20        |
| 75 | Toward a Better Understanding of Different Dissolution Behavior of Starches in Aqueous Ionic<br>Liquids at Room Temperature. ACS Omega, 2019, 4, 11312-11319.                                                                     | 1.6 | 19        |
| 76 | Octenyl Succinate Modification of Starch Enhances the Formation of Starch–Lipid Complexes.<br>Journal of Agricultural and Food Chemistry, 2021, 69, 14938-14950.                                                                  | 2.4 | 18        |
| 77 | The new insight on ultrastructure of C-type starch granules revealed by acid hydrolysis.<br>International Journal of Biological Macromolecules, 2008, 43, 216-220.                                                                | 3.6 | 17        |
| 78 | Partial characterization of starches from Dioscorea opposita Thunb. cultivars. Journal of Food<br>Engineering, 2008, 88, 287-293.                                                                                                 | 2.7 | 16        |
| 79 | Extraction and identification of internal granule proteins from waxy wheat starch. Starch/Staerke, 2013, 65, 186-190.                                                                                                             | 1.1 | 14        |
| 80 | Nature of phase transitions of waxy maize starch in water-ionic liquid mixtures. International Journal of Biological Macromolecules, 2018, 112, 315-325.                                                                          | 3.6 | 14        |
| 81 | Structural disorganization of cereal, tuber and bean starches in aqueous ionic liquid at room temperature: Role of starch granule surface structure. Carbohydrate Polymers, 2021, 258, 117677.                                    | 5.1 | 14        |
| 82 | Mechanisms Underlying the Effect of Tea Extracts on <i>In Vitro</i> Digestion of Wheat Starch.<br>Journal of Agricultural and Food Chemistry, 2021, 69, 8227-8235.                                                                | 2.4 | 14        |
| 83 | Inhibition of in vitro enzymatic starch digestion by coffee extract. Food Chemistry, 2021, 358, 129837.                                                                                                                           | 4.2 | 14        |
| 84 | Dissolution Behavior of Maize Starch in Aqueous Ionic Liquids: Effect of Anionic Structure and<br>Water/Ionic Liquid Ratio. ACS Omega, 2019, 4, 14981-14986.                                                                      | 1.6 | 13        |
| 85 | Effect of CaCl2 pre-treatment on the succinylation of potato starch. Food Chemistry, 2019, 288, 291-296.                                                                                                                          | 4.2 | 13        |
| 86 | Effects of cooling rate and complexing temperature on the formation of starch-lauric acid-β-lactoglobulin complexes. Carbohydrate Polymers, 2021, 253, 117301.                                                                    | 5.1 | 13        |
| 87 | Comparison of starches separated from three different F. cirrhosa. Journal of Food Engineering, 2007, 80, 417-422.                                                                                                                | 2.7 | 12        |
| 88 | Role of α-Dicarbonyl Compounds in the Inhibition Effect of Reducing Sugars on the Formation of<br>2-Amino-1-methyl-6-phenylimidazo[4,5- <i>b</i> ]pyridine. Journal of Agricultural and Food Chemistry,<br>2017, 65, 10084-10092. | 2.4 | 12        |
| 89 | Phase transition of maize starch in aqueous ionic liquids: Effects of water:ionic liquid ratio and cation alkyl chain length. Industrial Crops and Products, 2020, 144, 112043.                                                   | 2.5 | 12        |
| 90 | Effect of pH on formation of starch complexes with lauric acid and β-lactoglobulin. LWT - Food Science and Technology, 2020, 132, 109915.                                                                                         | 2.5 | 12        |

| #   | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | In vitro digestibility of starches with different crystalline polymorphs at low α-amylase activity to substrate ratio. Food Chemistry, 2021, 349, 129170.                                                         | 4.2 | 12        |
| 92  | Green synthesis of acetylated maize starch in different imidazolium carboxylate and choline carboxylate ionic liquids. Carbohydrate Polymers, 2022, 288, 119353.                                                  | 5.1 | 12        |
| 93  | Effect of Debranching and Differential Ethanol Precipitation on the Formation and Fermentation<br>Properties of Maize Starch–Lipid Complexes. Journal of Agricultural and Food Chemistry, 2022, 70,<br>9132-9142. | 2.4 | 11        |
| 94  | Novel Green Synthesis of Octenyl Succinic Anhydride Esters of Granular Starch. ACS Sustainable<br>Chemistry and Engineering, 2020, 8, 16503-16514.                                                                | 3.2 | 10        |
| 95  | Effects of Debranching on the Formation of Maize Starch–Lauric Acidâ^'β-Lactoglobulin Complexes.<br>Journal of Agricultural and Food Chemistry, 2021, 69, 9086-9093.                                              | 2.4 | 10        |
| 96  | Dissolution of Cellulose in Ionic Liquid–DMSO Mixtures: Roles of DMSO/IL Ratio and the Cation Alkyl<br>Chain Length. ACS Omega, 2021, 6, 27225-27232.                                                             | 1.6 | 10        |
| 97  | Morphological and Crystalline Properties of Starches from New Sources-Traditional Chinese<br>Medicines (TCMs). Starch/Staerke, 2008, 60, 110-114.                                                                 | 1.1 | 9         |
| 98  | Laser-MIG arc hybrid brazing-fusion welding of Al alloy to galvanized steel with different filler metals. Acta Metallurgica Sinica (English Letters), 2013, 26, 177-182.                                          | 1.5 | 9         |
| 99  | Insights into the starch gelatinization behavior inside intact cotyledon cells. International Journal of Biological Macromolecules, 2020, 163, 541-549.                                                           | 3.6 | 9         |
| 100 | Effects of Heat Stress and Cultivar on the Functional Properties of Starch in Chinese Wheat. Cereal Chemistry, 2017, 94, 443-450.                                                                                 | 1.1 | 8         |
| 101 | Effects of Reduced Nitrogen Fertilization and Irrigation on Structure and Physicochemical Properties of Starch in Two Bread Wheat Cultivars. Agriculture (Switzerland), 2021, 11, 26.                             | 1.4 | 8         |
| 102 | Methods for characterizing the structure of starch in relation to its applications: a comprehensive review. Critical Reviews in Food Science and Nutrition, 2023, 63, 4799-4816.                                  | 5.4 | 8         |
| 103 | Formation and migration of <i>α</i> â€dicarbonyl compounds during storage and reheating of a sugary food simulation system. Journal of the Science of Food and Agriculture, 2020, 100, 2296-2304.                 | 1.7 | 7         |
| 104 | Botanical Sources of Starch. , 2020, , 9-27.                                                                                                                                                                      |     | 5         |
| 105 | Interactions Between Starch, Proteins and Lipids and the Formation of Ternary Complexes With Distinct Properties. , 2019, , 487-493.                                                                              |     | 4         |
| 106 | Degradation of Potato Starch and the Antioxidant Activity of the Hydrolysates. Journal of Food<br>Processing and Preservation, 2017, 41, e13068.                                                                  | 0.9 | 3         |
| 107 | Starch Modification and Application. , 2020, , 131-149.                                                                                                                                                           |     | 3         |
|     |                                                                                                                                                                                                                   |     |           |

Alterations of polysaccharides, starch gelatinization, and retrogradation. , 2021, , 171-214.

1

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Phase Transitions of Starch and Molecular Mechanisms. , 2020, , 77-120.                                                                                                                            |     | 1         |
| 110 | Rheological, Pasting, and Textural Properties of Starch. , 2020, , 121-129.                                                                                                                        |     | 1         |
| 111 | Multiscale Structures of Starch Granules. , 2020, , 41-55.                                                                                                                                         |     | 1         |
| 112 | Structure and Functional Properties of Purple Yam ( <i>Dioscorea alata</i> L.) Starch from China.<br>Starch/Staerke, 2022, 74, .                                                                   | 1.1 | 1         |
| 113 | Acid Stable <i>α</i> -Amylase Supplementation in Sourdough Enhanced Lactic Acid Bacterial<br>Performance and the Quality of Bread. Journal of Biobased Materials and Bioenergy, 2021, 15, 392-398. | 0.1 | 0         |