
Johannes Hachmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9336634/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid. Journal of Physical Chemistry Letters, 2011, 2, 2241-2251.	4.6	470
2	The radical character of the acenes: A density matrix renormalization group study. Journal of Chemical Physics, 2007, 127, 134309.	3.0	421
3	Orbital optimization in the density matrix renormalization group, with applications to polyenes and \hat{I}^2 -carotene. Journal of Chemical Physics, 2008, 128, 144117.	3.0	288
4	Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry – the Harvard Clean Energy Project. Energy and Environmental Science, 2014, 7, 698-704.	30.8	189
5	Multireference correlation in long molecules with the quadratic scaling density matrix renormalization group. Journal of Chemical Physics, 2006, 125, 144101.	3.0	174
6	Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics. Energy and Environmental Science, 2011, 4, 4849.	30.8	169
7	The Harvard organic photovoltaic dataset. Scientific Data, 2016, 3, 160086.	5.3	85
8	Advances of machine learning in molecular modeling and simulation. Current Opinion in Chemical Engineering, 2019, 23, 51-57.	7.8	84
9	Targeted excited state algorithms. Journal of Chemical Physics, 2007, 127, 084109.	3.0	63
10	An Introduction to the Density Matrix Renormalization Group Ansatz in Quantum Chemistry. Progress in Theoretical Chemistry and Physics, 2008, , 49-65.	0.2	57
11	Analytic response theory for the density matrix renormalization group. Journal of Chemical Physics, 2009, 130, 184111.	3.0	55
12	<i>ChemML</i> : A machine learning and informatics program package for the analysis, mining, and modeling of chemical and materials data. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1458.	14.6	41
13	Metrics for Benchmarking and Uncertainty Quantification: Quality, Applicability, and Best Practices for Machine Learning in Chemistry. Trends in Chemistry, 2021, 3, 146-156.	8.5	37
14	Accelerated Discovery of High-Refractive-Index Polyimides via <i>First-Principles</i> Molecular Modeling, Virtual High-Throughput Screening, and Data Mining. Journal of Physical Chemistry C, 2019, 123, 14610-14618.	3.1	36
15	Combining first-principles and data modeling for the accurate prediction of the refractive index of organic polymers. Journal of Chemical Physics, 2018, 148, 241712.	3.0	33
16	A deep neural network model for packing density predictions and its application in the study of 1.5 million organic molecules. Chemical Science, 2019, 10, 8374-8383.	7.4	30
17	Building and deploying a cyberinfrastructure for the data-driven design of chemical systems and the exploration of chemical space. Molecular Simulation, 2018, 44, 921-929.	2.0	28
18	The nodes of Hartree–Fock wavefunctions and their orbitals. Chemical Physics Letters, 2004, 392, 55-61.	2.6	24

Johannes Hachmann

#	Article	IF	CITATIONS
19	Benchmarking DFT approaches for the calculation of polarizability inputs for refractive index predictions in organic polymers. Physical Chemistry Chemical Physics, 2019, 21, 4452-4460.	2.8	24
20	Revisiting the polytopal rearrangements in penta-coordinate d ⁷ -metallocomplexes: modified Berry pseudorotation, octahedral switch, and butterfly isomerization. Chemical Science, 2017, 8, 5512-5525.	7.4	18
21	Organic Photovoltaics. , 2013, , 423-442.		10
22	A Theoretical Study of the 3dâ€M(smif) ₂ Complexes: Structure, Magnetism, and Oxidation States. ChemPhysChem, 2011, 12, 3236-3244.	2.1	7
23	Roaming-like Mechanism for Dehydration of Diol Radicals. Journal of Physical Chemistry A, 2018, 122, 9738-9754.	2.5	7
24	Open Chemistry, <scp>JupyterLab</scp> , <scp>REST</scp> , and quantum chemistry. International Journal of Quantum Chemistry, 2021, 121, .	2.0	7
25	Machine learning and data science in materials design: a themed collection. Molecular Systems Design and Engineering, 2018, 3, 429-430.	3.4	6
26	<i>The Journal of Physical Chemistry A</i> / <i>B</i> / <i>C</i> Virtual Special Issue on Machine Learning in Physical Chemistry B, 2020, 124, 9767-9772.	2.6	2
27	<i>The Journal of Physical Chemistry A</i> / <i>B</i> / <i>C</i> Virtual Special Issue on Machine Learning in Physical Chemistry A, 2020, 124, 9113-9118.	2.5	2
28	<i>The Journal of Physical Chemistry A</i> / <i>B</i> / <i>C</i> Virtual Special Issue on Machine Learning in Physical Chemistry C, 2020, 124, 24033-24038.	3.1	1
29	High-Throughput Computational Studies in Catalysis and Materials Research, and Their Impact on Rational Design. , 2020, , 1-44.		1