Zhenyun Qian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9336512/publications.pdf

Version: 2024-02-01

933447 996975 1,054 27 10 15 citations h-index g-index papers 27 27 27 1222 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A method for infrared sensing based on oscillating zero power microelectromechanical photoswitches. Journal of Applied Physics, 2022, 131, .	2.5	1
2	Tutorial: Piezoelectric and magnetoelectric N/MEMSâ \in "Materials, devices, and applications. Journal of Applied Physics, 2022, 131, .	2.5	14
3	Uncooled Infrared Detector Based on an Aluminum Nitride Piezoelectric Fishnet Metasurface. Journal of Microelectromechanical Systems, 2021, 30, 165-172.	2.5	9
4	Curvature and Stress Effects on the Performance of Contourâ€Mode Resonant Δ <i>E</i> Effect Magnetometers. Advanced Materials Technologies, 2021, 6, 2100294.	5.8	7
5	A cumulative fatigue damage model of polysilicon films for MEMS resonator under repeated loadings. International Journal of Fatigue, 2021, 147, 106186.	5.7	7
6	High figure-of-merit NEMS thermal detectors based on 50-nm thick AlN nano-plate resonators. Applied Physics Letters, 2019, 115, .	3.3	10
7	Ultraâ€Narrowband Metamaterial Absorbers for High Spectral Resolution Infrared Spectroscopy. Advanced Optical Materials, 2019, 7, 1801236.	7.3	91
8	Effects of Bottom Electrode Topography in AlN Nano Plate Resonators on Quality Factor. , 2018, , .		1
9	A False Alarm-Free Zero-Power Micromechanical Photoswitch. , 2018, , .		0
10	Spectroscopic Chemical Sensing Based on Narrowband MEMS Resonant Infrared Detectors. , 2018, , .		5
11	Zero-Power Electrically Tunable Micromechanical Photoswitches. IEEE Sensors Journal, 2018, 18, 7833-7841.	4.7	23
12	Zero-power light-actuated micromechanical relay. , 2017, , .		8
13	Ultra-sensitive NEMS magnetoelectric sensor for picotesla DC magnetic field detection. Applied Physics Letters, 2017, 110, .	3.3	83
14	Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches. Nature Nanotechnology, 2017, 12, 969-973.	31.5	111
15	Acoustically actuated ultra-compact NEMS magnetoelectric antennas. Nature Communications, 2017, 8, 296.	12.8	299
16	Ultra narrowband infrared absorbers for omni-directional and polarization insensitive multi-spectral sensing microsystems. , 2017, , .		10
17	Threshold scaling of near-zero power micromechanical photoswitches using bias voltage. , 2017, , .		10
18	Aluminum Nitride cross-sectional Lam \tilde{A} © mode resonators with 260 MHz lithographic tuning capability and high kt2 > 4%. , 2016, , .		2

ZHENYUN QIAN

#	Article	IF	CITATIONS
19	Tunable RF band-pass filters based on NEMS magnetoelectric resonators. , 2016, , .		5
20	Graphene–aluminum nitride NEMS resonant infrared detector. Microsystems and Nanoengineering, 2016, 2, 16026.	7.0	60
21	Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing. Nature Communications, 2016, 7, 11249.	12.8	132
22	Effects of volume scaling in AlN nano plate resonators on quality factor., 2016,,.		2
23	Aluminum Nitride Cross-Sectional Lamé Mode Resonators. Journal of Microelectromechanical Systems, 2016, 25, 275-285.	2.5	89
24	Chemical sensing based on graphene-aluminum nitride nano plate resonators. , 2015, , .		1
25	Graphene as a Massless Electrode for Ultrahigh-Frequency Piezoelectric Nanoelectromechanical Systems. Nano Letters, 2015, 15, 4599-4604.	9.1	53
26	Single transistor oscillator based on a Graphene-Aluminum Nitride nano plate resonator. , 2013, , .		9
27	A 2.8 GHz combined mode of vibration aluminum nitride MEMS resonator with high figure of merit exceeding 45., 2013,,.		12