Monica Casucci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9336405/publications.pdf

Version: 2024-02-01

24 papers 2,596 citations

566801 15 h-index 713013 21 g-index

24 all docs

24 docs citations

times ranked

24

4411 citing authors

#	Article	IF	Citations
1	Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nature Medicine, 2018, 24, 739-748.	15.2	947
2	Loss of Mismatched HLA in Leukemia after Stem-Cell Transplantation. New England Journal of Medicine, 2009, 361, 478-488.	13.9	459
3	CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood, 2013, 122, 3461-3472.	0.6	306
4	Two subsets of stem-like CD8+ memory T cell progenitors with distinct fate commitments in humans. Nature Immunology, 2020, 21, 1552-1562.	7.0	167
5	Bone marrow central memory and memory stem T-cell exhaustion in AML patients relapsing after HSCT. Nature Communications, 2019, 10, 1065.	5.8	120
6	Extracellular NGFR Spacers Allow Efficient Tracking and Enrichment of Fully Functional CAR-T Cells Co-Expressing a Suicide Gene. Frontiers in Immunology, 2018, 9, 507.	2.2	73
7	NY-ESO-1 TCR single edited stem and central memory T cells to treat multiple myeloma without graft-versus-host disease. Blood, 2017, 130, 606-618.	0.6	71
8	Next-Generation Manufacturing Protocols Enriching TSCM CAR T Cells Can Overcome Disease-Specific T Cell Defects in Cancer Patients. Frontiers in Immunology, 2020, 11, 1217.	2.2	69
9	CAR T cell manufacturing from naive/stem memory T lymphocytes enhances antitumor responses while curtailing cytokine release syndrome. Journal of Clinical Investigation, 2022, 132, .	3.9	66
10	Overcoming the toxicity hurdles of genetically targeted T cells. Cancer Immunology, Immunotherapy, 2015, 64, 123-130.	2.0	51
11	Suicide Gene Therapy to Increase the Safety of Chimeric Antigen Receptor-Redirected T Lymphocytes. Journal of Cancer, 2011, 2, 378-382.	1.2	47
12	Disrupting N-glycan expression on tumor cells boosts chimeric antigen receptor T cell efficacy against solid malignancies. Science Translational Medicine, 2022, 14, eabg 3072.	5.8	47
13	Adoptive immunotherapy with genetically modified lymphocytes in allogeneic stem cell transplantation. Immunological Reviews, 2014, 257, 165-180.	2.8	46
14	Graft-versus-leukemia Effect of HLA-haploidentical Central-memory T-cells Expanded With Leukemic APCs and Modified With a Suicide Gene. Molecular Therapy, 2013, 21, 466-475.	3.7	23
15	Time to evolve: predicting engineered T cell-associated toxicity with next-generation models. , 2022, 10, e003486.		21
16	Acute Myeloid Leukemia Targeting by Chimeric Antigen Receptor T Cells: Bridging the Gap from Preclinical Modeling to Human Studies. Human Gene Therapy, 2017, 28, 231-241.	1.4	19
17	Exploiting Secreted Luciferases to Monitor Tumor Progression In Vivo. Methods in Molecular Biology, 2016, 1393, 105-111.	0.4	13
18	Myeloid cellâ€based delivery of IFNâ€Ĵ³ reprograms the leukemia microenvironment and induces antiâ€tumoral immune responses. EMBO Molecular Medicine, 2021, 13, e13598.	3.3	13

#	Article	lF	CITATIONS
19	Time 2EVOLVE: predicting efficacy of engineered T-cells \hat{a} €" how far is the bench from the bedside?. , 2022, 10, e003487.		13
20	Characterization and Functional Analysis of CD44v6.CAR T Cells Endowed with a New Low-Affinity Nerve Growth Factor Receptor-Based Spacer. Human Gene Therapy, 2021, 32, 744-760.	1.4	10
21	Overcoming key challenges in cancer immunotherapy with engineered T cells. Current Opinion in Oncology, 2020, 32, 398-407.	1.1	9
22	Human T cells engineered with a leukemia lipid-specific TCR enables donor-unrestricted recognition of CD1c-expressing leukemia. Nature Communications, 2021, 12, 4844.	5.8	3
23	Co-Expression of a Suicide Gene in CAR-Redirected T Cells Enables the Safe Targeting of CD44v6 for Leukemia and Myeloma Eradication. Blood, 2012, 120, 949-949.	0.6	3
24	102â€The deep phenotype characterization of â€^Off-the-Shelf' CD19-chimeric antigen receptor (CAR) T allows to identify their subset complexity and to optimize their manufacturing. , 2021, 9, A111-A112.	cells	0