Dawei Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9336162/publications.pdf Version: 2024-02-01

Ολωει λλιι

	IF	CITATIONS
n Energy and Combustion Science, 2006, 32,	15.8	679
eating and power system driven by a gas 7-987.	1.8	110
on the structural theory of	4.5	60
nixtures with laser ignition. International	3.8	47
with hydrogen. Applied Energy, 2011, 88,	5.1	37
ge. Energy and Buildings, 2012, 55, 361-368.	3.1	37
n pool boiling under sub-atmospheric 2019, 134, 933-947.	2.5	28
nerator designed for renewable energy 25-34.	4.4	24
droplets in vacuum spray flash er, 2019, 144, 118552.	2.5	24
nonia jets in a constant volume vessel.	3.4	23
eneration using thermal and cryogenic nal Journal of Energy Research, 2018, 42,	2.2	22
ating on a dry friction principle. Applied	5.1	17
with Out-of-cylinder Combustion. Energy	1.8	15
ng in micro trigeneration application: A	5.1	14
rototype for remote and self-contained and gaseous and particulate emissions.	1.5	13
le engine generator with different , 2018, 173, 375-382.	4.4	13
ton megalocarpus oil – A performance and 33-1392	5.1	11
	ge. Energy and Buildings, 2012, 55, 361-368. n pool boiling under sub-atmospheric 2019, 134, 933-947. enerator designed for renewable energy 25-34. I droplets in vacuum spray flash er, 2019, 144, 118552. nonia jets in a constant volume vessel. generation using thermal and cryogenic boal Journal of Energy Research, 2018, 42, ating on a dry friction principle. Applied e with Out-of-cylinder Combustion. Energy ing in micro trigeneration application: A prototype for remote and self-contained and gaseous and particulate emissions. ele engine generator with different t, 2018, 173, 375-382.	ge. Energy and Buildings, 2012, 55, 361-368. 3.1 n pool boiling under sub-atmospheric 2.5 2019, 134, 933-947. 2.5 enerator designed for renewable energy 4.4 1 droplets in vacuum spray flash 2.5 er, 2019, 144, 118552. 2.5 nonia jets in a constant volume vessel. 3.4 generation using thermal and cryogenic 3.4 generation using thermal and cryogenic 2.2 ating on a dry friction principle. Applied 5.1 e with Out-of-cylinder Combustion. Energy 1.8 ing in micro trigeneration application: A 5.1 prototype for remote and self-contained and gaseous and particulate emissions. 1.5 alle engine generator with different 4.4 t, 2018, 173, 375-382. 4.4

Dawei Wu

#	Article	IF	CITATIONS
19	Dual Reutilization of LNG Cryogenic Energy and Thermal Waste Energy with Organic Rankine Cycle in Marine Applications. Energy Procedia, 2017, 142, 1401-1406.	1.8	10
20	Thermo-Economic Performance of an Organic Rankine Cycle System Recovering Waste Heat Onboard an Offshore Service Vessel. Journal of Marine Science and Engineering, 2020, 8, 351.	1.2	10
21	Parametric analysis of a semi-closed-loop linear joule engine generator using argon and oxy-hydrogen combustion. Energy, 2021, 217, 119357.	4.5	10
22	Characterising premixed ammonia and hydrogen combustion for a novel Linear Joule Engine Generator. International Journal of Hydrogen Energy, 2021, 46, 23075-23090.	3.8	10
23	System Modelling of Organic Rankine Cycle for Waste Energy Recovery System in Marine Applications. Energy Procedia, 2019, 158, 1955-1961.	1.8	9
24	Characterization of Lubricant Degeneration and Component Deterioration on Diesel Engine Fueling with Straight Plant Oil. Energy Procedia, 2017, 105, 636-641.	1.8	7
25	Characteristics of Ammonia/Hydrogen Premixed Combustion in a Novel Linear Engine Generator. Proceedings (mdpi), 2020, 58, .	0.2	6
26	An Investigation of Short Translator Linear Machines for Use in a Free Piston Engine. , 2019, , .		5
27	A preliminary experimental study on a lab-scale Linear Joule Engine prototype. Energy Procedia, 2019, 158, 2244-2249.	1.8	5
28	An experimental investigation of salt-water separation in the vacuum flashing assisted with heat pipes and solid adsorption. Desalination, 2016, 399, 116-123.	4.0	4
29	The effect of power converter on the design of a Linear Alternator for use with a Joule Cycle-Free Piston Engine. , 2017, , .		4
30	Performance of a tubular machine driven by an externalâ€combustion freeâ€piston engine. Journal of Engineering, 2019, 2019, 3867-3871.	0.6	4
31	Research on the Intake Port of a Uniflow Scavenging GDI Opposed-Piston Two-Stroke Engine. Energies, 2022, 15, 2148.	1.6	4
32	A new fresh water generation system under high vacuum degrees intensified by LNG cryogenic energy. Energy Procedia, 2019, 158, 726-732.	1.8	3
33	A waste cryogenic energy assisted freshwater generator for marine applications. Desalination, 2021, 500, 114898.	4.0	3
34	Investigation of the combustion and emissions of ligninâ€derived aromatic oxygenates in a marine diesel engine. Biofuels, Bioproducts and Biorefining, 2021, 15, 1709.	1.9	3
35	Performance, Emissions and Durability Studies on Diesel Engine Fuelled with a Preheated Raw Microalgal Oil. Proceedings (mdpi), 2020, 58, 4.	0.2	3
36	A study of translator length in a tubular linear electrical machine designed for use in alinear combustion joule engine. , 2019, , .		2

#	Article	IF	CITATIONS
37	Pressure drop study on an Organic Rankine System utilizing LNG cryogenic energy and waste heat recovery. Energy Procedia, 2019, 158, 718-725.	1.8	2
38	Modelling and build of an integrated linear engine generator designed for power density. , 2021, , .		1