Guilherme Bessegato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9336010/publications.pdf Version: 2024-02-01

CHULHEDME RESSECATO

#	Article	IF	CITATIONS
1	Advances in photoelectroreduction of CO2 to hydrocarbons fuels: Contributions of functional materials. Journal of CO2 Utilization, 2022, 55, 101810.	3.3	15
2	Photo- and electro-oxidation of tetracycline hydrochloride on self-doped titanium dioxide nanotubes modified by Pt sub-monolayers. Electrochimica Acta, 2022, 404, 139712.	2.6	10
3	Recent achievements in photoelectrocatalytic degradation of pesticides. Current Opinion in Electrochemistry, 2022, 35, 101020.	2.5	12
4	Synthesis and electrochemical characterization of Si/TiO2/Au composite anode: Efficient oxygen evolution and hydroxyl radicals generation. Electrochimica Acta, 2021, 370, 137742.	2.6	8
5	A novel sensing platform based on self-doped TiO2 nanotubes for methylene blue dye electrochemical monitoring during its electro-Fenton degradation. Journal of Solid State Electrochemistry, 2020, 24, 1951-1959.	1.2	8
6	Non-targeted method to detect honey adulteration: Combination of electrochemical and spectrophotometric responses with principal component analysis. Journal of Food Composition and Analysis, 2020, 89, 103466.	1.9	21
7	Efficient treatment of swimming pool water by photoelectrocatalytic ozonation: Inactivation of Candida parapsilosis and mineralization of Benzophenone-3 and urea. Chemical Engineering Journal, 2019, 378, 122094.	6.6	26
8	Experimental design as a tool for parameter optimization of photoelectrocatalytic degradation of a textile dye. Journal of Environmental Chemical Engineering, 2019, 7, 103264.	3.3	19
9	Electroanalytical sensing of dyes and colorants. Current Opinion in Electrochemistry, 2019, 16, 134-142.	2.5	31
10	Evidences of the Electrochemical Production of Sulfate Radicals at Cathodically Polarized TiO2 Nanotubes Electrodes. Electrocatalysis, 2019, 10, 272-276.	1.5	4
11	Combination of Photoelectrocatalysis and Ozonation as a Good Strategy for Organics Oxidation and Decreased Toxicity in Oil-Produced Water. Journal of the Electrochemical Society, 2019, 166, H3231-H3238.	1.3	23
12	Electrodeposition of WO3 on Ti substrate and the influence of interfacial oxide layer generated in situ: A photoelectrocatalytic degradation of propyl paraben. Applied Surface Science, 2019, 464, 664-672.	3.1	33
13	Electrochemical decolorization of Rhodamine B dye: Influence of anode material, chloride concentration and current density. Journal of Environmental Chemical Engineering, 2018, 6, 2041-2047.	3.3	91
14	Assessment of several advanced oxidation processes applied in the treatment of environmental concern constituents from a real hair dye wastewater. Journal of Environmental Chemical Engineering, 2018, 6, 2794-2802.	3.3	42
15	Reagentless Detection of Low-Molecular-Weight Triamterene Using Self-Doped TiO2 Nanotubes. Analytical Chemistry, 2018, 90, 7651-7658.	3.2	17
16	Self-doped TiO2 nanotube electrodes: A powerful tool as a sensor platform for electroanalytical applications. Electrochimica Acta, 2017, 235, 527-533.	2.6	44
17	Assessment of molecularly imprinted polymers (MIPs) in the preconcentration of disperse red 73 dye prior to photoelectrocatalytic treatment. Environmental Science and Pollution Research, 2017, 24, 4134-4143.	2.7	6
18	PANORAMA DA ELETROQUÃMICA E ELETROANALÃTICA NO BRASIL. Quimica Nova, 2017, , .	0.3	1

#	Article	IF	CITATIONS
19	Electrochemistry: A Powerful Tool for Preparation of Semiconductor Materials for Decontamination of Organic and Inorganic Pollutants, Disinfection, and CO 2 Reduction. , 2017, , 239-269.		1
20	Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization. Water Research, 2016, 98, 39-46.	5.3	185
21	Determination of Quercetin by a Siloxane-Polyester/Poly-L-Lysine Nanocomposite Modified Glassy Carbon Electrode. Analytical Letters, 2016, 49, 1398-1411.	1.0	7
22	Combination of photoelectrocatalysis and ozonation: A novel and powerful approach applied in Acid Yellow 1 mineralization. Applied Catalysis B: Environmental, 2016, 180, 161-168.	10.8	53
23	Achievements and Trends in Photoelectrocatalysis: from Environmental to Energy Applications. Electrocatalysis, 2015, 6, 415-441.	1.5	201
24	Enhanced photoelectrocatalytic degradation of an acid dye with boron-doped TiO2 nanotube anodes. Catalysis Today, 2015, 240, 100-106.	2.2	109
25	THE CHEMISTRY AND TOXICITY OF HAIR DYES. Quimica Nova, 2014, , .	0.3	4
26	Enhanced photoabsorption properties of composites of Ti/TiO2 nanotubes decorated by Sb2S3 and improvement of degradation of hair dye. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 276, 96-103.	2.0	42
27	Degradação fotoeletroquÃmica do herbicida bentazona sobre eletrodos de carbono modificados por TiO2. Quimica Nova, 2012, 35, 332-336.	0.3	3
28	Enhancement of Photoelectrocatalysis Efficiency by Using Nanostructured Electrodes. , 0, , .		14
29	Incorporation of Fluorescent Dyes in Electrospun Chitosan/Poly(ethylene oxide). Journal of the Brazilian Chemical Society, O	0.6	0