
Karolina TahovskÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9335932/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Major changes in forest carbon and nitrogen cycling caused by declining sulphur deposition. Global Change Biology, 2011, 17, 3115-3129.	9.5	119
2	Nitrogen, organic carbon and sulphur cycling in terrestrial ecosystems: linking nitrogen saturation to carbon limitation of soil microbial processes. Biogeochemistry, 2013, 115, 33-51.	3.5	87
3	Microbial N immobilization is of great importance in acidified mountain spruce forest soils. Soil Biology and Biochemistry, 2013, 59, 58-71.	8.8	73
4	Response of soil chemistry to forest dieback after bark beetle infestation. Biogeochemistry, 2013, 113, 369-383.	3.5	56
5	Different temperature sensitivity and kinetics of soil enzymes indicate seasonal shifts in C, N and P nutrient stoichiometry in acid forest soil. Biogeochemistry, 2014, 117, 525-537.	3.5	56
6	Positive response of soil microbes to long-term nitrogen input in spruce forest: Results from Gårdsjön whole-catchment N-addition experiment. Soil Biology and Biochemistry, 2020, 143, 107732.	8.8	35
7	Microbial communities with distinct denitrification potential in spruce and beech soils differing in nitrate leaching. Scientific Reports, 2017, 7, 9738.	3.3	34
8	Excess of Organic Carbon in Mountain Spruce Forest Soils after Bark Beetle Outbreak Altered Microbial N Transformations and Mitigated N-Saturation. PLoS ONE, 2015, 10, e0134165.	2.5	34
9	Comparison of the impacts of acid and nitrogen additions on carbon fluxes in European conifer and broadleaf forests. Environmental Pollution, 2018, 238, 884-893.	7.5	29
10	Coupling the resource stoichiometry and microbial biomass turnover to predict nutrient mineralization and immobilization in soil. Geoderma, 2021, 385, 114884.	5.1	26
11	Long-term forest soil acidification, nutrient leaching and vegetation development: Linking modelling and surveys of a primeval spruce forest in the Ukrainian Transcarpathian Mts Ecological Modelling, 2012, 244, 28-37.	2.5	20
12	Nitrogen transformations and pools in N-saturated mountain spruce forest soils. Biology and Fertility of Soils, 2009, 45, 395-404.	4.3	17
13	Tree dieback and related changes in nitrogen dynamics modify the concentrations and proportions of cations on soil sorption complex. Ecological Indicators, 2019, 97, 319-328.	6.3	16
14	Bacteria but not fungi respond to soil acidification rapidly and consistently in both a spruce and beech forest. FEMS Microbiology Ecology, 2020, 96, .	2.7	15
15	Litter decomposition in European coniferous and broadleaf forests under experimentally elevated acidity and nitrogen addition. Plant and Soil, 2021, 463, 471-485.	3.7	15
16	Carbon and Nitrogen Pools and Fluxes in Adjacent Mature Norway Spruce and European Beech Forests. Forests, 2016, 7, 282.	2.1	11
17	Dissolved and gaseous nitrogen losses in forests controlled by soil nutrient stoichiometry. Environmental Research Letters, 2021, 16, 064025.	5.2	9
18	In situ phosphorus dynamics in soil: long-term ion-exchange resin study. Biogeochemistry, 2018, 139, 307-320	3.5	8

Karolina TahovskÃi

#	Article	IF	CITATIONS
19	Soil Microbiome Composition along the Natural Norway Spruce Forest Life Cycle. Forests, 2021, 12, 410.	2.1	6
20	Changes in forest nitrogen cycling across deposition gradient revealed by δ15N in tree rings. Environmental Pollution, 2022, 304, 119104.	7.5	5
21	Biochemical inhibition of acid phosphatase activity in two mountain spruce forest soils. Biology and Fertility of Soils, 2021, 57, 991-1005.	4.3	2
22	Measurement of <i>in situ</i> Phosphorus Availability in Acidified Soils using Iron-Infused Resin. Communications in Soil Science and Plant Analysis, 0, , 1-8.	1.4	1