
Margaret M Billingsley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9335909/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Orthogonal Design of Experiments for Optimization of Lipid Nanoparticles for mRNA Engineering of CAR T Cells. Nano Letters, 2022, 22, 533-542.	4.5	57
2	Amniotic fluid stabilized lipid nanoparticles for in utero intra-amniotic mRNA delivery. Journal of Controlled Release, 2022, 341, 616-633.	4.8	29
3	Lighting the way to personalized mRNA immune cell therapies. Science Advances, 2022, 8, eabo2423.	4.7	2
4	Hydroxycholesterol substitution in ionizable lipid nanoparticles for mRNA delivery to T cells. Journal of Controlled Release, 2022, 347, 521-532.	4.8	33
5	Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 2021, 20, 101-124.	21.5	3,154
6	A Nanoparticle Platform for Accelerated In Vivo Oral Delivery Screening of Nucleic Acids. Advanced Therapeutics, 2021, 4, .	1.6	13
7	Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver. Biomaterials Science, 2021, 9, 1449-1463.	2.6	84
8	Ionizable lipid nanoparticles for in utero mRNA delivery. Science Advances, 2021, 7, .	4.7	110
9	Nanomaterials for T-cell cancer immunotherapy. Nature Nanotechnology, 2021, 16, 25-36.	15.6	191
10	Delivery technologies for T cell gene editing: Applications in cancer immunotherapy. EBioMedicine, 2021, 67, 103354.	2.7	48
11	One-Component Multifunctional Sequence-Defined Ionizable Amphiphilic Janus Dendrimer Delivery Systems for mRNA. Journal of the American Chemical Society, 2021, 143, 12315-12327.	6.6	66
12	Ionizable Lipid Nanoparticle Platforms for in Utero Drug Delivery. Journal of the American College of Surgeons, 2020, 231, S204.	0.2	0
13	Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering. Nano Letters, 2020, 20, 1578-1589.	4.5	299
14	Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. Journal of Controlled Release, 2019, 316, 404-417.	4.8	111
15	Evaluating the Mechanisms of Light-Triggered siRNA Release from Nanoshells for Temporal Control Over Gene Regulation. Nano Letters, 2018, 18, 3565-3570.	4.5	49
16	Biomaterials for vaccine-based cancer immunotherapy. Journal of Controlled Release, 2018, 292, 256-276.	4.8	146
17	Quantification of siRNA Duplexes Bound to Gold Nanoparticle Surfaces. Methods in Molecular Biology, 2017, 1570, 1-15.	0.4	16
18	Antibody-nanoparticle conjugates to enhance the sensitivity of ELISA-based detection methods. PLoS ONE, 2017, 12, e0177592.	1.1	51