
Yaofeng Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9335888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nature Genetics, 2013, 45, 1431-1438.	21.4	472
2	Identification of IgF, a hinge-region-containing Ig class, and IgD in Xenopus tropicalis. Proceedings of the United States of America, 2006, 103, 12087-12092.	7.1	102
3	Artiodactyl IgD: The Missing Link. Journal of Immunology, 2002, 169, 4408-4416.	0.8	89
4	Class Switch Recombination: A Comparison Between Mouse and Human. Advances in Immunology, 2007, 93, 1-61.	2.2	87
5	Expression of IgM, IgD, and IgY in a Reptile, <i>Anolis carolinensis</i> . Journal of Immunology, 2009, 183, 3858-3864.	0.8	64
6	Islr regulates canonical Wnt signaling-mediated skeletal muscle regeneration by stabilizing Dishevelled-2 and preventing autophagy. Nature Communications, 2018, 9, 5129.	12.8	64
7	<i>Ornithorhynchus anatinus</i> (Platypus) Links the Evolution of Immunoglobulin Genes in Eutherian Mammals and Nonmammalian Tetrapods. Journal of Immunology, 2009, 183, 3285-3293.	0.8	59
8	A de novo silencer causes elimination of MITF-M expression and profound hearing loss in pigs. BMC Biology, 2016, 14, 52.	3.8	53
9	The immunoglobulin gene loci in the teleost Gasterosteus aculeatus. Fish and Shellfish Immunology, 2010, 28, 40-48.	3.6	49
10	A comparative overview of immunoglobulin genes and the generation of their diversity in tetrapods. Developmental and Comparative Immunology, 2013, 39, 103-109.	2.3	48
11	Over-expression of the bovine FcRn in the mammary gland results in increased IgG levels in both milk and serum of transgenic mice. Immunology, 2007, 122, 401-408.	4.4	46
12	Generation of Pigs Resistant to Highly Pathogenic-Porcine Reproductive and Respiratory Syndrome Virus through Gene Editing of <i>CD163</i> . International Journal of Biological Sciences, 2019, 15, 481-492.	6.4	46
13	Physical Mapping of the Bovine Immunoglobulin Heavy Chain Constant Region Gene Locus. Journal of Biological Chemistry, 2003, 278, 35024-35032.	3.4	45
14	The two suborders of chiropterans have the canonical heavy-chain immunoglobulin (Ig) gene repertoire of eutherian mammals. Developmental and Comparative Immunology, 2011, 35, 273-284.	2.3	45
15	The Porcine Ig δ Gene: Unique Chimeric Splicing of the First Constant Region Domain in its Heavy Chain Transcripts. Journal of Immunology, 2003, 171, 1312-1318.	0.8	44
16	The Immunoglobulins: New Insights, Implications, and Applications. Annual Review of Animal Biosciences, 2020, 8, 145-169.	7.4	44
17	Phylogeny, genomic organization and expression of λ and κ immunoglobulin light chain genes in a reptile, Anolis carolinensis. Developmental and Comparative Immunology, 2010, 34, 579-589.	2.3	43
18	Internal Duplications of DH, JH, and C Region Genes Create an Unusual IgH Gene Locus in Cattle. Journal of Immunology, 2016, 196, 4358-4366.	0.8	42

YAOFENG ZHAO

#	Article	IF	CITATIONS
19	Analysis of Immunoglobulin Transcripts in the Ostrich Struthio camelus, a Primitive Avian Species. PLoS ONE, 2012, 7, e34346.	2.5	42
20	A comprehensive analysis of germline and expressed immunoglobulin repertoire in the horse. Developmental and Comparative Immunology, 2010, 34, 1009-1020.	2.3	39
21	miR-29a/b1 Inhibits Hair Follicle Stem Cell Lineage Progression by Spatiotemporally Suppressing WNT and BMP Signaling. Cell Reports, 2019, 29, 2489-2504.e4.	6.4	36
22	Extensive diversification of IgH subclass-encoding genes and IgM subclass switching in crocodilians. Nature Communications, 2013, 4, 1337.	12.8	35
23	Extensive Diversification of IgD-, IgY-, and Truncated IgY(ΔFc)-Encoding Genes in the Red-Eared Turtle (<i>Trachemys scripta elegans</i>). Journal of Immunology, 2012, 189, 3995-4004.	0.8	34
24	Genomic organization of the immunoglobulin light chain gene loci in Xenopus tropicalis: Evolutionary implications. Developmental and Comparative Immunology, 2008, 32, 156-165.	2.3	32
25	A Preliminary Analysis of the Immunoglobulin Genes in the African Elephant (Loxodonta africana). PLoS ONE, 2011, 6, e16889.	2.5	31
26	The immunoglobulin δgene in jawed vertebrates: A comparative overview. Developmental and Comparative Immunology, 2011, 35, 975-981.	2.3	26
27	Intraclass diversification of immunoglobulin heavy chain genes in the African lungfish. Immunogenetics, 2014, 66, 335-351.	2.4	26
28	Immunoglobulin genes and diversity: what we have learned from domestic animals. Journal of Animal Science and Biotechnology, 2012, 3, 18.	5.3	25
29	Multiple IgH Isotypes Including IgD, Subclasses of IgM, and IgY Are Expressed in the Common Ancestors of Modern Birds. Journal of Immunology, 2016, 196, 5138-5147.	0.8	25
30	Silencing of retrotransposon-derived imprinted gene RTL1 is the main cause for postimplantational failures in mammalian cloning. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11071-E11080.	7.1	25
31	Immunoglobulin Genomics in the Guinea Pig (Cavia porcellus). PLoS ONE, 2012, 7, e39298.	2.5	23
32	Evidence of IgY Subclass Diversification in Snakes: Evolutionary Implications. Journal of Immunology, 2012, 189, 3557-3565.	0.8	21
33	A Comprehensive Analysis of the Phylogeny, Genomic Organization and Expression of Immunoglobulin Light Chain Genes in Alligator sinensis, an Endangered Reptile Species. PLoS ONE, 2016, 11, e0147704.	2.5	19
34	Exploring the stage-specific roles of Tcf-1 in T cell development and malignancy at single-cell resolution. Cellular and Molecular Immunology, 2021, 18, 644-659.	10.5	18
35	Genome-wide Mapping Reveals Conservation of Promoter DNA Methylation Following Chicken Domestication. Scientific Reports, 2015, 5, 8748.	3.3	17
36	Characterization of the MHC class II $\hat{l}\pm$ -chain gene in ducks. Immunogenetics, 2011, 63, 667-678.	2.4	16

YAOFENG ZHAO

#	Article	IF	CITATIONS
37	Physical mapping of the giant panda immunoglobulin heavy chain constant region genes. Developmental and Comparative Immunology, 2007, 31, 1034-1049.	2.3	15
38	Overexpression of miR-29 Leads to Myopathy that Resemble Pathology of Ullrich Congenital Muscular Dystrophy. Cells, 2019, 8, 459.	4.1	14
39	Convergent and divergent genetic changes in the genome of Chinese and European pigs. Scientific Reports, 2017, 7, 8662.	3.3	13
40	Cloning of the complete rat immunoglobulin delta gene: evolutionary implications. Immunology, 2003, 108, 288-295.	4.4	12
41	Bovine FcRn-Mediated Human Immunoglobulin G Transfer across the Milk-Blood Barrier in Transgenic Mice. PLoS ONE, 2014, 9, e115972.	2.5	12
42	A comprehensive analysis of the germline and expressed TCR repertoire in White Peking duck. Scientific Reports, 2017, 7, 41426.	3.3	12
43	Incorporation of a skeletal muscle-specific enhancer in the regulatory region of Igf1 upregulates IGF1 expression and induces skeletal muscle hypertrophy. Scientific Reports, 2018, 8, 2781.	3.3	12
44	Expressional Analysis of Immunoglobulin D in Cattle (Bos taurus), a Large Domesticated Ungulate. PLoS ONE, 2012, 7, e44719.	2.5	10
45	Analysis of TCRÎ ² and TCRÎ ³ genes in Chinese alligator provides insights into the evolution of TCR genes in jawed vertebrates. Developmental and Comparative Immunology, 2018, 85, 31-43.	2.3	10
46	A high-throughput screen for genes essential for PRRSV infection using a piggyBac-based system. Virology, 2019, 531, 19-30.	2.4	9
47	Presence of the di-leucine motif in the cytoplasmic tail of the pig FcRn α chain. Veterinary Immunology and Immunopathology, 2003, 96, 229-233.	1.2	8
48	Identification of Two Nonrearranging IgSF Genes in Chicken Reveals a Novel Family of Putative Remnants of an Antigen Receptor Precursor. Journal of Immunology, 2019, 202, 1992-2004.	0.8	7
49	Revisiting the Pig IGHC Gene Locus in Different Breeds Uncovers Nine Distinct IGHG Genes. Journal of Immunology, 2020, 205, 2137-2145.	0.8	7
50	TCF-1 deficiency influences the composition of intestinal microbiota and enhances susceptibility to colonic inflammation. Protein and Cell, 2020, 11, 380-386.	11.0	7
51	Multiple germline functional VL genes contribute to the IgL repertoire in ducks. Developmental and Comparative Immunology, 2016, 60, 167-179.	2.3	6
52	Analysis of the Chinese Alligator TCRα/δLoci Reveals the Evolutionary Pattern of Atypical TCRÎ′/TCRμ in Tetrapods. Journal of Immunology, 2020, 205, 637-647.	0.8	6
53	Three IgH isotypes, IgM, IgA and IgY are expressed in Gentoo penguin and zebra finch. PLoS ONE, 2017, 12, e0173334.	2.5	6
54	Genetic Removal of the CH1 Exon Enables the Production of Heavy Chain-Only IgG in Mice. Frontiers in Immunology, 2018, 9, 2202.	4.8	5

YAOFENG ZHAO

#	Article	IF	CITATIONS
55	Immunoglobulin Genes in Tetrapods. , 2014, , 17-52.		4
56	Identification of a Transcriptionally Forward α Gene and Two Ï Genes within the Pigeon (Columba livia) IgH Gene Locus. Journal of Immunology, 2018, 200, 3720-3728.	0.8	3
57	Generation of porcine monoclonal antibodies based on single cell technologies. Veterinary Immunology and Immunopathology, 2019, 215, 109913.	1.2	3
58	FcRn is not the receptor mediating the transfer of serum IgG to colostrum in pigs. Immunology, 2021, 163, 448-459.	4.4	3
59	Immunoglobulin D and its encoding genes: An updated review. Developmental and Comparative Immunology, 2021, 124, 104198.	2.3	3
60	Truncation of the Murine Neonatal Fc Receptor Cytoplasmic Tail Does Not Alter IgG Metabolism or Transport In Vivo. Journal of Immunology, 2018, 200, 1413-1424.	0.8	2
61	Reshaping the murine immunoglobulin heavy chain repertoire with bovine DH genes. Immunology, 2021, , ,	4.4	2
62	Depletion of conventional mature B cells and compromised specific antibody response in bovine immunoglobulin &Mgr heavy-chain transgenic mice. Frontiers of Agricultural Science and Engineering, 2014, 1, 158.	1.4	1
63	Genetic removal of the CH1 exon leads to the production of hypofunctional heavy chain-only IgG2a in rats. Transgenic Research, 2020, 29, 199-213.	2.4	0