List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9335673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The habitat function of mangroves for terrestrial and marine fauna: A review. Aquatic Botany, 2008, 89, 155-185.	0.8	1,037
2	Importance of Mangroves, Seagrass Beds and the Shallow Coral Reef as a Nursery for Important Coral Reef Fishes, Using a Visual Census Technique. Estuarine, Coastal and Shelf Science, 2000, 51, 31-44.	0.9	455
3	The seascape nursery: a novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish and Fisheries, 2015, 16, 362-371.	2.7	367
4	Marine nurseries and effective juvenile habitats: concepts and applications. Marine Ecology - Progress Series, 2006, 312, 291-295.	0.9	323
5	How important are mangroves and seagrass beds for coral-reef fish? The nursery hypothesis tested on an island scale. Marine Ecology - Progress Series, 2002, 244, 299-305.	0.9	316
6	True Value of Estuarine and Coastal Nurseries for Fish: Incorporating Complexity and Dynamics. Estuaries and Coasts, 2015, 38, 401-414.	1.0	312
7	Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to communityâ€level responses. Global Change Biology, 2016, 22, 974-989.	4.2	291
8	Importance of shallow-water biotopes of a Caribbean bay for juvenile coral reef fishes: patterns in biotope association, community structure and spatial distribution. Marine Ecology - Progress Series, 2000, 202, 175-192.	0.9	246
9	Recent Region-wide Declines in Caribbean Reef Fish Abundance. Current Biology, 2009, 19, 590-595.	1.8	238
10	Dependence of Caribbean reef fishes on mangroves and seagrass beds as nursery habitats: a comparison of fish faunas between bays with and without mangroves/seagrass beds. Marine Ecology - Progress Series, 2001, 214, 225-235.	0.9	222
11	Global alteration of ocean ecosystem functioning due to increasing human CO ₂ emissions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13272-13277.	3.3	220
12	Ontogenetic dietary changes of coral reef fishes in the mangrove-seagrass-reef continuum: stable isotopes and gut-content analysis. Marine Ecology - Progress Series, 2003, 246, 279-289.	0.9	219
13	Caribbean sea-fan mortalities. Nature, 1996, 383, 487-487.	13.7	209
14	Day-night shifts of fishes between shallow-water biotopes of a Caribbean bay, with emphasis on the nocturnal feeding of Haemulidae and Lutjanidae. Marine Ecology - Progress Series, 2000, 194, 55-64.	0.9	197
15	Nursery function of tropical back-reef systems. Marine Ecology - Progress Series, 2006, 318, 287-301.	0.9	192
16	Post-settlement Life Cycle Migration Patterns and Habitat Preference of Coral Reef Fish that use Seagrass and Mangrove Habitats as Nurseries. Estuarine, Coastal and Shelf Science, 2002, 55, 309-321.	0.9	185
17	UN Decade on Ecosystem Restoration 2021–2030—What Chance for Success in Restoring Coastal Ecosystems?. Frontiers in Marine Science, 2020, 7, .	1.2	181
18	Indo-Pacific seagrass beds and mangroves contribute to fish density and diversity on adjacent coral reefs. Marine Ecology - Progress Series, 2005, 302, 63-76.	0.9	181

#	Article	IF	CITATIONS
19	Mechanisms and ecological role of carbon transfer within coastal seascapes. Biological Reviews, 2014, 89, 232-254.	4.7	166
20	Coral Larvae Move toward Reef Sounds. PLoS ONE, 2010, 5, e10660.	1.1	161
21	Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biology, 2018, 16, e2003446.	2.6	154
22	Human effects on ecological connectivity in aquatic ecosystems: Integrating scientific approaches to support management and mitigation. Science of the Total Environment, 2015, 534, 52-64.	3.9	143
23	Structure, food and shade attract juvenile coral reef fish to mangrove and seagrass habitats: a field experiment. Marine Ecology - Progress Series, 2006, 306, 257-268.	0.9	143
24	Do non-estuarine mangroves harbour higher densities of juvenile fish than adjacent shallow-water and coral reef habitats in Curaçao (Netherlands Antilles)?. Marine Ecology - Progress Series, 2002, 245, 191-204.	0.9	141
25	The relationship of reef fish densities to the proximity of mangrove and seagrass nurseries. Estuarine, Coastal and Shelf Science, 2004, 60, 37-48.	0.9	136
26	Widespread disease in Caribbean sea fans:II. Patterns of infection and tissue loss. Marine Ecology - Progress Series, 1997, 160, 255-263.	0.9	120
27	Ocean acidification and global warming impair shark hunting behaviour and growth. Scientific Reports, 2015, 5, 16293.	1.6	115
28	Influence of habitat configuration on connectivity between fish assemblages of Caribbean seagrass beds, mangroves and coral reefs. Marine Ecology - Progress Series, 2007, 334, 103-116.	0.9	113
29	Diet shifts of Caribbean grunts (Haemulidae) and snappers (Lutjanidae) and the relation with nursery-to-coral reef migrations. Estuarine, Coastal and Shelf Science, 2003, 57, 1079-1089.	0.9	112
30	Relative importance of interlinked mangroves and seagrass beds as feeding habitats for juvenile reef fish on a Caribbean island. Marine Ecology - Progress Series, 2004, 274, 153-159.	0.9	109
31	Mangrove Habitat Use by Juvenile Reef Fish: Meta-Analysis Reveals that Tidal Regime Matters More than Biogeographic Region. PLoS ONE, 2014, 9, e114715.	1.1	108
32	When trends intersect: The challenge of protecting freshwater ecosystems under multiple land use and hydrological intensification scenarios. Science of the Total Environment, 2015, 534, 65-78.	3.9	105
33	Evaluation of Nursery function of Mangroves and Seagrass beds for Tropical Decapods and Reef fishes: Patterns and Underlying Mechanisms. , 2009, , 357-399.		103
34	Ocean acidification alters fish populations indirectly through habitat modification. Nature Climate Change, 2016, 6, 89-93.	8.1	103
35	A test of the senses: Fish select novel habitats by responding to multiple cues. Ecology, 2012, 93, 46-55.	1.5	100
36	What attracts juvenile coral reef fish to mangroves: habitat complexity or shade?. Marine Biology, 2004, 144, 139-145.	0.7	99

3

#	Article	IF	CITATIONS
37	The importance of mangroves, mud and sand flats, and seagrass beds as feeding areas for juvenile fishes in Chwaka Bay, Zanzibar: gut content and stable isotope analyses. Journal of Fish Biology, 2006, 69, 1639-1661.	0.7	99
38	Ecological complexity buffers the impacts of future climate on marine consumers. Nature Climate Change, 2018, 8, 229-233.	8.1	88
39	Seagrass nurseries contribute to coral reef fish populations. Limnology and Oceanography, 2008, 53, 1540-1547.	1.6	87
40	Potential for landscape-scale positive interactions among tropical marine ecosystems. Marine Ecology - Progress Series, 2014, 503, 289-303.	0.9	86
41	Simple ecological trade-offs give rise to emergent cross-ecosystem distributions of a coral reef fish. Oecologia, 2011, 165, 79-88.	0.9	84
42	Ontogenetic habitat use by mangrove/seagrass-associated coral reef fishes shows flexibility in time and space. Estuarine, Coastal and Shelf Science, 2011, 92, 47-58.	0.9	83
43	What Drives Ontogenetic Niche Shifts of Fishes in Coral Reef Ecosystems?. Ecosystems, 2013, 16, 783-796.	1.6	83
44	Seagrass beds and mangroves as potential nurseries for the threatened Indo-Pacific humphead wrasse, Cheilinus undulatus and Caribbean rainbow parrotfish, Scarus guacamaia. Biological Conservation, 2006, 129, 277-282.	1.9	80
45	Are Caribbean mangroves important feeding grounds for juvenile reef fish from adjacent seagrass beds?. Marine Ecology - Progress Series, 2004, 274, 143-151.	0.9	80
46	Effects of Marine Reserves versus Nursery Habitat Availability on Structure of Reef Fish Communities. PLoS ONE, 2012, 7, e36906.	1.1	73
47	Distribution of coral reef fishes along a coral reef-seagrass gradient: edge effects and habitat segregation. Marine Ecology - Progress Series, 2005, 299, 277-288.	0.9	72
48	Ecological Connectivity among Tropical Coastal Ecosystems. , 2009, , .		69
49	Caribbean mangroves and seagrass beds as daytime feeding habitats for juvenile French grunts, Haemulon flavolineatum. Marine Biology, 2006, 149, 1291-1299.	0.7	68
50	The Mangrove Nursery Paradigm Revisited: Otolith Stable Isotopes Support Nursery-to-Reef Movements by Indo-Pacific Fishes. PLoS ONE, 2013, 8, e66320.	1.1	68
51	How ocean acidification can benefit calcifiers. Current Biology, 2017, 27, R95-R96.	1.8	67
52	Association of green tea consumption with mortality due to all causes and major causes of death in a Japanese population: the Japan Public Health Center-based Prospective Study (JPHC Study). Annals of Epidemiology, 2015, 25, 512-518.e3.	0.9	66
53	What Makes Nearshore Habitats Nurseries for Nekton? An Emerging View of the Nursery Role Hypothesis. Estuaries and Coasts, 2018, 41, 1539-1550.	1.0	66
54	Habitat utilisation by juveniles of commercially important fish species in a marine embayment in Zanzibar, Tanzania. Aquatic Living Resources, 2005, 18, 149-158.	0.5	63

#	Article	IF	CITATIONS
55	Title is missing!. Hydrobiologia, 2001, 460, 53-63.	1.0	61
56	Invasions by Alien Species in Inland Freshwater Bodies in Western Europe: The Rhine Delta. , 2002, , 360-372.		60
57	Trophic pyramids reorganize when food web architecture fails to adjust to ocean change. Science, 2020, 369, 829-832.	6.0	60
58	Short and long-term movement and site fidelity of juvenile Haemulidae in back-reef habitats of a Caribbean embayment. Hydrobiologia, 2007, 592, 257-270.	1.0	59
59	Lost at sea: ocean acidification undermines larval fish orientation via altered hearing and marine soundscape modification. Biology Letters, 2016, 12, 20150937.	1.0	56
60	Homing and Daytime Tidal Movements of Juvenile Snappers (Lutjanidae) between Shallow-Water Nursery Habitats in Zanzibar, Western Indian Ocean. Environmental Biology of Fishes, 2004, 70, 203-209.	0.4	55
61	Growth potential and predation risk drive ontogenetic shifts among nursery habitats in a coral reef fish. Marine Ecology - Progress Series, 2014, 502, 229-244.	0.9	54
62	Context is more important than habitat type in determining use by juvenile fish. Landscape Ecology, 2019, 34, 427-442.	1.9	54
63	Differences in root architecture influence attraction of fishes to mangroves: A field experiment mimicking roots of different length, orientation, and complexity. Journal of Experimental Marine Biology and Ecology, 2010, 396, 27-34.	0.7	51
64	Mangrove Fish Production is Largely Fuelled by External Food Sources: A Stable Isotope Analysis of Fishes at the Individual, Species, and Community Levels from Across the Globe. Ecosystems, 2013, 16, 1336-1352.	1.6	51
65	The duality of ocean acidification as a resource and a stressor. Ecology, 2018, 99, 1005-1010.	1.5	51
66	Interlinkage between Caribbean coral reefs and seagrass beds through feeding migrations by grunts (Haemulidae) depends on habitat accessibility. Marine Ecology - Progress Series, 2008, 368, 155-164.	0.9	49
67	Importance of different carbon sources for macroinvertebrates and fishes of an interlinked mangrove–mudflat ecosystem (Tanzania). Estuarine, Coastal and Shelf Science, 2010, 88, 464-472.	0.9	48
68	Different Surrounding Landscapes may Result in Different Fish Assemblages in East African Seagrass Beds. Hydrobiologia, 2006, 563, 45-60.	1.0	47
69	Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale. PLoS ONE, 2015, 10, e0142022.	1.1	47
70	Ocean acidification boosts larval fish development but reduces the window of opportunity for successful settlement. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151954.	1.2	47
71	Species Interactions Drive Fish Biodiversity Loss in a High-CO2 World. Current Biology, 2017, 27, 2177-2184.e4.	1.8	47
72	Piscivore assemblages and predation pressure affect relative safety of some back-reef habitats for juvenile fish in a Caribbean bay. Marine Ecology - Progress Series, 2009, 379, 181-196.	0.9	46

#	Article	IF	CITATIONS
73	A comparison of fish communities of subtidal seagrass beds and sandy seabeds in 13 marine embayments of a Caribbean island, based on species, families, size distribution and functional groups. Journal of Sea Research, 2004, 52, 127-147.	0.6	45
74	What makes mangroves attractive to fish? Use of artificial units to test the influence of water depth, cross-shelf location, and presence of root structure. Estuarine, Coastal and Shelf Science, 2008, 79, 559-565.	0.9	45
75	Baseline Study of Submerged Marine Debris at Beaches in Curaçao, West Indies. Marine Pollution Bulletin, 2001, 42, 786-789.	2.3	44
76	Cryptic dietary components reduce dietary overlap among sympatric butterflyfishes (Chaetodontidae). Journal of Fish Biology, 2009, 75, 1123-1143.	0.7	44
77	Boosted food web productivity through ocean acidification collapses under warming. Global Change Biology, 2017, 23, 4177-4184.	4.2	43
78	A tetrodotoxin-producing marine pathogen. Nature, 2000, 404, 354-354.	13.7	42
79	Geographic coupling of juvenile and adult habitat shapes spatial population dynamics of a coral reef fish. Ecology, 2013, 94, 1859-1870.	1.5	38
80	Post-larval French grunts (Haemulon flavolineatum) distinguish between seagrass, mangrove and coral reef water: Implications for recognition of potential nursery habitats. Journal of Experimental Marine Biology and Ecology, 2008, 357, 134-139.	0.7	37
81	Impacts of Near-Future Ocean Acidification and Warming on the Shell Mechanical and Geochemical Properties of Gastropods from Intertidal to Subtidal Zones. Environmental Science & Technology, 2017, 51, 12097-12103.	4.6	37
82	Species range shifts along multistressor mosaics in estuarine environments under future climate. Fish and Fisheries, 2020, 21, 32-46.	2.7	37
83	Ecological effects of elevated CO2 on marine and freshwater fishes: From individual to community effects. Fish Physiology, 2019, , 323-368.	0.2	36
84	Habitat selection during settlement of three Caribbean coral reef fishes: Indications for directed settlement to seagrass beds and mangroves. Limnology and Oceanography, 2007, 52, 903-907.	1.6	35
85	Mangroves and seagrass beds do not enhance growth of early juveniles of a coral reef fish. Marine Ecology - Progress Series, 2008, 366, 137-146.	0.9	35
86	The potential role of visual cues for microhabitat selection during the early life phase of a coral reef fish (Lutjanus fulviflamma). Journal of Experimental Marine Biology and Ecology, 2011, 401, 118-125.	0.7	35
87	Silent oceans: ocean acidification impoverishes natural soundscapes by altering sound production of the world's noisiest marine invertebrate. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20153046.	1.2	34
88	Segregation along multiple resource axes in a tropical seagrass fish community. Marine Ecology - Progress Series, 2006, 308, 79-89.	0.9	34
89	Environmental Flow Requirements of Estuaries: Providing Resilience to Current and Future Climate and Direct Anthropogenic Changes. Frontiers in Environmental Science, 2021, 9, .	1.5	34
90	Spatial and temporal variation in fish community structure of a marine embayment in Zanzibar, Tanzania. Hydrobiologia, 2007, 586, 1-16.	1.0	33

#	Article	IF	CITATIONS
91	Highly localized replenishment of coral reef fish populations near nursery habitats. Marine Ecology - Progress Series, 2017, 568, 137-150.	0.9	30
92	Fish movement from nursery bays to coral reefs: a matter of size?. Hydrobiologia, 2015, 750, 89-101.	1.0	29
93	Trophic niche segregation allows rangeâ€extending coral reef fishes to coâ€exist with temperate species under climate change. Global Change Biology, 2020, 26, 721-733.	4.2	29
94	Future ocean climate homogenizes communities across habitats through diversity loss and rise of generalist species. Global Change Biology, 2019, 25, 3539-3548.	4.2	28
95	Calcifiers can Adjust Shell Building at the Nanoscale to Resist Ocean Acidification. Small, 2020, 16, e2003186.	5.2	28
96	Dietary generalism accelerates arrival and persistence of coralâ€reef fishes in their novel ranges under climate change. Global Change Biology, 2020, 26, 5564-5573.	4.2	28
97	Boosted nutritional quality of food by CO2 enrichment fails to offset energy demand of herbivores under ocean warming, causing energy depletion and mortality. Science of the Total Environment, 2018, 639, 360-366.	3.9	27
98	Depth-related variation in regeneration of artificial lesions in the Caribbean corals Porites astreoides and Stephanocoenia michelinii. Journal of Experimental Marine Biology and Ecology, 1999, 234, 29-39.	0.7	26
99	Online, Directed Journaling in Community Health Advanced Practice Nursing Clinical Education. Journal of Nursing Education, 2004, 43, 175-180.	0.4	26
100	The sounds of silence: regime shifts impoverish marine soundscapes. Landscape Ecology, 2017, 32, 239-248.	1.9	25
101	A triple trophic boost: How carbon emissions indirectly change a marine food chain. Global Change Biology, 2019, 25, 978-984.	4.2	25
102	Colonisation of artificial mangroves by reef fishes in a marine seascape. Estuarine, Coastal and Shelf Science, 2007, 75, 417-422.	0.9	24
103	Antagonistic effects of ocean acidification and warming on hunting sharks. Oikos, 2017, 126, .	1.2	24
104	How calorie-rich food could help marine calcifiers in a CO ₂ -rich future. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190757.	1.2	24
105	Sea urchin Meoma ventricosa die-off in Curaçao (Netherlands Antilles) associated with a pathogenic bacterium. Diseases of Aquatic Organisms, 1999, 38, 71-74.	0.5	23
106	Rapid evolution fuels transcriptional plasticity to ocean acidification. Global Change Biology, 2022, 28, 3007-3022.	4.2	23
107	Direct and indirect effects of nursery habitats on coralâ€reef fish assemblages, grazing pressure and benthic dynamics. Oikos, 2016, 125, 957-967.	1.2	22
108	Ocean acidification alters temperature and salinity preferences in larval fish. Oecologia, 2017, 183, 545-553.	0.9	21

#	Article	IF	CITATIONS
109	Orientation from open water to settlement habitats by coral reef fish: behavioral flexibility in the use of multiple reliable cues. Marine Ecology - Progress Series, 2013, 493, 243-257.	0.9	21
110	Title is missing!. Aquatic Ecology, 2001, 35, 73-86.	0.7	20
111	Influence of morphology and amphibious life-style on the feeding ecology of the mudskipper Periophthalmus argentilineatus. Journal of Fish Biology, 2007, 71, 39-52.	0.7	19
112	On the wrong track: ocean acidification attracts larval fish to irrelevant environmental cues. Scientific Reports, 2018, 8, 5840.	1.6	19
113	Range-extending coral reef fishes trade-off growth for maintenance of body condition in cooler waters. Science of the Total Environment, 2020, 703, 134598.	3.9	19
114	Context Dependence: A Conceptual Approach for Understanding the Habitat Relationships of Coastal Marine Fauna. BioScience, 2020, , .	2.2	19
115	Demography of fish populations reveals new challenges in appraising juvenile habitat values. Marine Ecology - Progress Series, 2015, 518, 225-237.	0.9	19
116	Mangroves and People: Local Ecosystem Services in a Changing Climate. , 2017, , 245-274.		18
117	Adaptive responses of fishes to climate change: Feedback between physiology and behaviour. Science of the Total Environment, 2019, 692, 1242-1249.	3.9	18
118	Changes in Coral Reef Communities and an Associated Reef Fish Species, Cephalopholis cruentata (Lacépède), After 30Âyears on Curaçao (Netherlands Antilles). Hydrobiologia, 2005, 549, 145-154.	1.0	17
119	Differential regeneration of artificial lesions among sympatric morphs of the Caribbean corals Porites astreoides and Stephanocoenia michelinii. Marine Ecology - Progress Series, 1998, 163, 279-283.	0.9	17
120	Marine nurseries and effective juvenile habitats. Marine Ecology - Progress Series, 2006, 318, 307-308.	0.9	17
121	Population structure of the Dory snapper, LutjanusÂfulviflamma, in the western Indian Ocean revealed by means of AFLP fingerprinting. Hydrobiologia, 2006, 568, 43-53.	1.0	16
122	Preference of early juveniles of a coral reef fish for Âdistinct lagoonal microhabitats is not related to common measures of structural complexity. Marine Ecology - Progress Series, 2011, 432, 221-233.	0.9	16
123	Fish Species Utilization of Contrasting sub-Habitats Distributed Along an Ocean-to-Land Environmental Gradient in a Tropical Mangrove and Seagrass Lagoon. Estuaries and Coasts, 2015, 38, 1448-1465.	1.0	16
124	Largeâ€scale distribution patterns of mangrove nematodes: A global metaâ€analysis. Ecology and Evolution, 2018, 8, 4734-4742.	0.8	16
125	Habitat type and schooling interactively determine refuge-seeking behavior in a coral reef fish throughout ontogeny. Marine Ecology - Progress Series, 2011, 437, 241-251.	0.9	16
126	Ocean acidification may slow the pace of tropicalization of temperate fish communities. Nature Climate Change, 2021, 11, 249-256.	8.1	15

#	Article	IF	CITATIONS
127	Consequences of Anthropogenic Changes in the Sensory Landscape of Marine Animals. , 2019, , 229-264.		15
128	Seasonal and environmental influences on recruitment patterns and habitat usage among resident and transient fishes in a <scp>W</scp> orld <scp>H</scp> eritage <scp>S</scp> ite subtropical estuary. Journal of Fish Biology, 2017, 90, 396-416.	0.7	14
129	Ocean acidification boosts reproduction in fish via indirect effects. PLoS Biology, 2021, 19, e3001033.	2.6	14
130	Ocean warming and acidification degrade shoaling performance and lateralization of novel tropical–temperate fish shoals. Global Change Biology, 2022, 28, 1388-1401.	4.2	13
131	Swimming behaviour and dispersal patterns of headstarted loggerhead turtles Caretta caretta. Aquatic Ecology, 2003, 37, 183-190.	0.7	12
132	Who's hot and who's not: ocean warming alters species dominance through competitive displacement. Journal of Animal Ecology, 2013, 82, 287-289.	1.3	12
133	Microhabitat change alters abundances of competing species and decreases species richness under ocean acidification. Science of the Total Environment, 2018, 645, 615-622.	3.9	12
134	A future 1.2â€Â°C increase in ocean temperature alters the quality of mangrove habitats for marine plants and animals. Science of the Total Environment, 2019, 690, 596-603.	3.9	12
135	Seagrass meadows provide multiple benefits to adjacent coral reefs through various microhabitat functions. Ecosystem Health and Sustainability, 2020, 6, .	1.5	12
136	Mollusc communities of tropical rubble shores of Curaçao: Long-term (7+ years) impacts of oil pollution. Marine Pollution Bulletin, 1995, 30, 592-598.	2.3	11
137	CO2 emissions boost the benefits of crop production by farming damselfish. Nature Ecology and Evolution, 2018, 2, 1223-1226.	3.4	11
138	Functional loss in herbivores drives runaway expansion of weedy algae in a near-future ocean. Science of the Total Environment, 2019, 695, 133829.	3.9	11
139	Ocean warming increases availability of crustacean prey via riskier behavior. Behavioral Ecology, 2020, 31, 287-291.	1.0	11
140	Novel species interactions and environmental conditions reduce foraging competency at the temperate range edge of a range-extending coral reef fish. Coral Reefs, 2021, 40, 1525-1536.	0.9	11
141	Communication: Quantitative Fourier-transform infrared data for competitive loading of small cages during all-vapor instantaneous formation of gas-hydrate aerosols. Journal of Chemical Physics, 2011, 135, 141103.	1.2	10
142	Ocean life breaking rules by building shells in acidic extremes. Current Biology, 2017, 27, R1104-R1106.	1.8	10
143	Irreversible behavioural impairment of fish starts early: Embryonic exposure to ocean acidification. Marine Pollution Bulletin, 2018, 133, 562-567.	2.3	10
144	Climate change erodes competitive hierarchies among native, alien and range-extending crabs. Marine Environmental Research, 2019, 151, 104777.	1.1	10

#	Article	IF	CITATIONS
145	Global affiliation of juvenile fishes and invertebrates with mangrove habitats. Bulletin of Marine Science, 2020, 96, 403-414.	0.4	10
146	Behavioural generalism could facilitate coexistence of tropical and temperate fishes under climate change. Journal of Animal Ecology, 2022, 91, 86-100.	1.3	10
147	Natural CO ₂ seeps reveal adaptive potential to ocean acidification in fish. Evolutionary Applications, 2021, 14, 1794-1806.	1.5	9
148	Biology and Ecology of Corals and Fishes on the Bermuda Platform. Coral Reefs of the World, 2013, , 135-151.	0.3	9
149	A description of the skeletal development pattern of the temperate coral Caryophyllia smithi based on internal growth lines. Journal of the Marine Biological Association of the United Kingdom, 1997, 77, 375-387.	0.4	7
150	Ocean acidification alters fish–jellyfish symbiosis. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161146.	1.2	7
151	Ecological Constraint Mapping: Understanding Outcome-Limiting Bottlenecks for Improved Environmental Decision-Making in Marine and Coastal Environments. Frontiers in Marine Science, 2021, 8, .	1.2	7
152	Climate change negates positive CO2 effects on marine species biomass and productivity by altering the strength and direction of trophic interactions. Science of the Total Environment, 2021, 801, 149624.	3.9	7
153	Predicting Geographic Ranges of Marine Animal Populations Using Stable Isotopes: A Case Study of Great Hammerhead Sharks in Eastern Australia. Frontiers in Marine Science, 2020, 7, .	1.2	6
154	Natural and anthropogenic climate variability shape assemblages of rangeâ€extending coralâ€reef fishes. Journal of Biogeography, 2021, 48, 1063-1075.	1.4	6
155	Local Environmental Context Structures Animal-Habitat Associations Across Biogeographic Regions. Ecosystems, 2022, 25, 237-251.	1.6	5
156	Shallow patch reefs as alternative habitats for early juveniles of some mangrove/seagrass-associated fish species in Bermuda. Revista De Biologia Tropical, 2008, 56, .	0.1	5
157	Coral-reef fishes can become more risk-averse at their poleward range limits. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212676.	1.2	5
158	Seafloor Terrain Shapes the Three-dimensional Nursery Value of Mangrove and Seagrass Habitats. Ecosystems, 0, , .	1.6	4
159	Opposing life stageâ€specific effects of ocean warming at source and sink populations of rangeâ€shifting coralâ€reef fishes. Journal of Animal Ecology, 2021, 90, 615-627.	1.3	3
160	Coral Disease. Science, 1998, 280, 499c-499.	6.0	3
161	Shark teeth can resist ocean acidification. Global Change Biology, 2022, , .	4.2	3
162	Phenotypic responses in fish behaviour narrow as climate ramps up. Climatic Change, 2022, 171, 1.	1.7	3

#	Article	IF	CITATIONS
163	Positive species interactions strengthen in a high-CO 2 ocean. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210475.	1.2	2
164	A new host and locality record: Gnathia sp. (Isopoda: Gnathiidae) on the barred mudskipper, Periophthalmus argentilineatus Valenciennes, 1837 (Perciformes: Gobiidae) from Tanzania. Journal of the Egyptian Society of Parasitology, 2007, 37, 851-2.	0.1	1
165	The Past and Future Ecologies of Australasian Kelp Forests. , 2019, , 414-430.		0