
Mohammad Asadullah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9335576/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review on carbon dioxide mineral carbonation through pH-swing process. Chemical Engineering Journal, 2015, 279, 615-630.	12.7	162
2	Measurement of CO ₂ Solubility in NaCl Brine Solutions at Different Temperatures and Pressures Using the Potentiometric Titration Method. Journal of Chemical & Engineering Data, 2015, 60, 2042-2049.	1.9	48
3	Effect of ultrasound radiation duration on emulsification and demulsification of paraffin oil and surfactant solution/brine using Hele-shaw models. Ultrasonics Sonochemistry, 2015, 26, 428-436.	8.2	34
4	Mineral carbonation of red gypsum via pH-swing process: Effect of CO2 pressure on the efficiency and products characteristics. Chemical Engineering Journal, 2015, 264, 425-436.	12.7	56
5	Extraction of calcium from red gypsum for calcium carbonate production. Fuel Processing Technology, 2015, 130, 12-19.	7.2	37
6	Carbon Dioxide Mineral Carbonation Through pH-swing Process: A Review. Energy Procedia, 2014, 61, 2783-2786.	1.8	20
7	Life Cycle Energy Balance Analysis for Producer Gas Production from Bio-oil for Power Generation. Energy Procedia, 2014, 61, 2814-2817.	1.8	1
8	Barriers of commercial power generation using biomass gasification gas: A review. Renewable and Sustainable Energy Reviews, 2014, 29, 201-215.	16.4	406
9	Direct carbonation of red gypsum to produce solid carbonates. Fuel Processing Technology, 2014, 126, 429-434.	7.2	71
10	Biomass gasification gas cleaning for downstream applications: A comparative critical review. Renewable and Sustainable Energy Reviews, 2014, 40, 118-132.	16.4	276
11	Preparation of microporous activated carbon and its modification for arsenic removal from water. Journal of Industrial and Engineering Chemistry, 2014, 20, 887-896.	5.8	98
12	Catalytic reforming of tar during gasification. Part V. Decomposition of NO precursors on the char-supported iron catalyst. Fuel, 2014, 116, 19-24.	6.4	28
13	Optimization of palm kernel shell torrefaction to produce energy densified bio-coal. Energy Conversion and Management, 2014, 88, 1086-1093.	9.2	101
14	Life cycle assessment to evaluate the green house gas emission from oil palm bio-oil based power plant. Korean Journal of Chemical Engineering, 2013, 30, 1277-1283.	2.7	14
15	Role of microporosity and surface functionality of activated carbon in methylene blue dye removal from water. Korean Journal of Chemical Engineering, 2013, 30, 2228-2234.	2.7	18
16	An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Part II: Tar reforming using char as a catalyst or as a catalyst support. Fuel, 2013, 112, 646-653.	6.4	108
17	Catalytic reforming of tar during gasification. Part IV. Changes in the structure of char in the char supported iron catalyst during reforming. Fuel, 2013, 106, 858-863.	6.4	57
18	Production and detailed characterization of bio-oil from fast pyrolysis of palm kernel shell. Biomass and Bioenergy, 2013, 59, 316-324.	5.7	120

#	Article	IF	CITATIONS
19	An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Fuel, 2013, 108, 409-416.	6.4	52
20	Catalytic reforming of tar during gasification. Part III. Effects of feedstock on tar reforming using ilmenite as a catalyst. Fuel, 2013, 103, 950-955.	6.4	33
21	Catalytic reforming of tar during gasification. Part I. Steam reforming of biomass tar using ilmenite as a catalyst. Fuel, 2011, 90, 1847-1854.	6.4	162
22	Catalytic reforming of tar during gasification. Part II. Char as a catalyst or as a catalyst support for tar reforming. Fuel, 2011, 90, 2545-2552.	6.4	212
23	Chemical and structural evaluation of activated carbon prepared from jute sticks for Brilliant Green dye removal from aqueous solution. Journal of Hazardous Materials, 2010, 174, 437-443.	12.4	95
24	Catalytic performance of Ni/CeO2/Al2O3 modified with noble metals in steam gasification of biomass. Catalysis Today, 2008, 131, 146-155.	4.4	122
25	Promoting effect of Pt addition to Ni/CeO2/Al2O3 catalyst for steam gasification of biomass. Catalysis Communications, 2008, 9, 195-201.	3.3	93
26	Preparation and Adsorption Studies of High Specific Surface Area Activated Carbons Obtained from the Chemical Activation of Jute Stick. Adsorption Science and Technology, 2006, 24, 761-770.	3.2	12
27	Syngas production by biomass gasification using Rh/CeO2/SiO2 catalysts and fluidized bed reactor. Catalysis Today, 2004, 89, 389-403.	4.4	206
28	A comparison of Rh/CeO2/SiO2 catalysts with steam reforming catalysts, dolomite and inert materials as bed materials in low throughput fluidized bed gasification systems. Biomass and Bioenergy, 2004, 26, 269-279.	5.7	106
29	Gasification of different biomasses in a dual-bed gasifier system combined with novel catalysts with high energy efficiency. Applied Catalysis A: General, 2004, 267, 95-102.	4.3	103
30	Novel Catalysts for Gasification of Biomass with High Energy Efficiency. Studies in Surface Science and Catalysis, 2004, 153, 85-90.	1.5	1
31	Novel Catalysts for Gasification of Biomass with High Conversion Efficiency. Catalysis Surveys From Asia, 2003, 7, 219-233.	2.6	22
32	Demonstration of real biomass gasification drastically promoted by effective catalyst. Applied Catalysis A: General, 2003, 246, 103-116.	4.3	100
33	Catalyst development for the gasification of biomass in the dual-bed gasifier. Applied Catalysis A: General, 2003, 255, 169-180.	4.3	79
34	Catalyst performance in reforming of tar derived from biomass over noble metal catalysts. Green Chemistry, 2003, 5, 399.	9.0	77
35	64 Catalyst development for low temperature gasification of biomass: Function of char removal in fluidized bed reactor. Studies in Surface Science and Catalysis, 2003, 145, 307-310.	1.5	9
36	Gasification of Cellulose over Rh/CeO ₂ /SiO ₂ Catalysts: Combustion of Coke and Reforming of Tar. Journal of the Japan Petroleum Institute, 2003, 46, 69-76.	0.6	9

#	Article	IF	CITATIONS
37	Syngas Production from Gasification of Biomass over Rh/CeO ₂ /SiO ₂ Catalyst: Pyrogasification, Steam Reforming and CO ₂ Reforming. Journal of the Japan Petroleum Institute, 2003, 46, 322-327.	0.6	14
38	Energy Efficient Production of Hydrogen and Syngas from Biomass:  Development of Low-Temperature Catalytic Process for Cellulose Gasification. Environmental Science & Technology, 2002, 36, 4476-4481.	10.0	119
39	Role of Catalyst and Its Fluidization in the Catalytic Gasification of Biomass to Syngas at Low Temperature. Industrial & Engineering Chemistry Research, 2002, 41, 4567-4575.	3.7	50
40	Novel biomass gasification method with high efficiency: catalytic gasification at low temperature. Green Chemistry, 2002, 4, 385-389.	9.0	23
41	Biomass Gasification to Hydrogen and Syngas at Low Temperature: Novel Catalytic System Using Fluidized-Bed Reactor. Journal of Catalysis, 2002, 208, 255-259.	6.2	224
42	Highly Efficient Production of Synthesis Gas by Catalytic Gasification of Biomass at Low Reaction Temperature Kagaku Kogaku Ronbunshu, 2002, 28, 666-672.	0.3	10
43	A novel catalytic process for cellulose gasification to synthesis gas. Catalysis Communications, 2001, 2, 63-68.	3.3	92
44	Catalytic Performance of Rh/CeO2 in the Gasification of Cellulose to Synthesis Gas at Low Temperature. Industrial & Engineering Chemistry Research, 2001, 40, 5894-5900.	3.7	82
45	Calcium Carbonate Production through Direct Mineral Carbon Dioxide Sequestration. Applied Mechanics and Materials, 0, 699, 1020-1025.	0.2	4