Weihong Qi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9335051/publications.pdf

Version: 2024-02-01

471371 454834 44 975 17 30 citations h-index g-index papers 44 44 44 1539 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Tunable electronic structure and CO2 adsorption of hb-Sb/graphene van der Waals heterostructure. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 139, 115154.	1.3	4
2	Fast and Deep Reconstruction of Coprecipitated Fe Phosphates on Nickel Foams for an Alkaline Oxygen Evolution Reaction. Journal of Physical Chemistry Letters, 2022, 13, 1446-1452.	2.1	7
3	High-Throughput Calculation of Interlayer van der Waals Forces Validated with Experimental Measurements. Research, 2022, 2022, 9765121.	2.8	10
4	Promoting the Waterâ€Reduction Kinetics and Alkali Tolerance of MoNi ₄ Nanocrystals via a Mo ₂ TiC ₂ T <i>_x</i> Induced Builtâ€in Electric Field. Small, 2022, 18, e2107541.	5.2	19
5	Interlayer Friction in Graphene/MoS2, Graphene/NbSe2, Tellurene/MoS2 and Tellurene/NbSe2 van der Waals Heterostructures. Frontiers in Mechanical Engineering, 2022, 8, .	0.8	2
6	First-principles study of the contact resistance and optoelectronic properties of PdSe2/MoTe2 van der Waals heterostructure optoelectronic devices. Chinese Journal of Physics, 2022, 78, 57-71.	2.0	2
7	Structure engineering of Ni2P by Mo doping for robust electrocatalytic water and methanol oxidation reactions. Electrochimica Acta, 2021, 369, 137692.	2.6	20
8	Facile Surface Laser Modification of Nickel Foams for Efficient Water Oxidation Electrocatalysis. ChemElectroChem, 2021, 8, 2124-2128.	1.7	2
9	Superlubricity in bilayer isomeric tellurene and graphene/tellurene van der Waals heterostructures. Tribology International, 2021, 159, 106974.	3.0	15
10	Tuning the electronic structure and optical properties of \hat{l}^2 -Te/g-SiC and \hat{l}^2 -Te/MoS2 van der Waals heterostructure. Materials Chemistry and Physics, 2021, 273, 125026.	2.0	2
11	Ultrafast fabrication of Cu oxide micro/nano-structures via laser ablation to promote oxygen evolution reaction. Chemical Engineering Journal, 2020, 383, 123086.	6.6	42
12	Optical properties of ZnO/Black Phosphorus/ZnO sandwich structures. Physica B: Condensed Matter, 2020, 579, 411903.	1.3	11
13	Nonlinear optical modulation of MoS2/black phosphorus/MoS2 at 1550Ânm. Physica B: Condensed Matter, 2020, 594, 412364.	1.3	8
14	Hierarchical CoFe oxyhydroxides nanosheets and Co2P nanoparticles grown on Ni foam for overall water splitting. Electrochimica Acta, 2020, 360, 136994.	2.6	19
15	Interlayer friction and superlubricity in bilayer graphene and MoS2/MoSe2 van der Waals heterostructures. Tribology International, 2020, 151, 106483.	3.0	49
16	Moiréâ€Patternâ€Tuned Electronic Structures of van der Waals Heterostructures. Advanced Functional Materials, 2020, 30, 2002672.	7.8	31
17	Hybrids of PtRu Nanoclusters and Black Phosphorus Nanosheets for Highly Efficient Alkaline Hydrogen Evolution Reaction. ACS Catalysis, 2019, 9, 10870-10875.	5.5	86
18	Rapid Fabrication of Ni/NiO@CoFe Layered Double Hydroxide Hierarchical Nanostructures by Femtosecond Laser Ablation and Electrodeposition for Efficient Overall Water Splitting. ChemSusChem, 2019, 12, 2773-2779.	3.6	29

#	Article	IF	CITATIONS
19	Facial Synthesis of 1T Phase MoS ₂ Nanoflowers via Anion Exchange Method for Efficient Hydrogen Evolution. ChemistrySelect, 2019, 4, 2070-2074.	0.7	7
20	Cobalt hydroxide-black phosphorus nanosheets: A superior electrocatalyst for electrochemical oxygen evolution. Electrochimica Acta, 2019, 297, 40-45.	2.6	27
21	Co(OH)2 Nanosheets Supported on Laser Ablated Cu Foam: An Efficient Oxygen Evolution Reaction Electrocatalyst. Frontiers in Chemistry, 2019, 7, 900.	1.8	12
22	Composition-controlled synthesis of platinum and palladium nanoalloys as highly active electrocatalysts for methanol oxidation. Chinese Journal of Catalysis, 2018, 39, 342-349.	6.9	13
23	Thermal conductivity of single-wall MoS2 nanotubes. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	7
24	One-pot synthesis of CuPt nanodendrites with enhanced activity towards methanol oxidation reaction. RSC Advances, 2018, 8, 9293-9298.	1.7	8
25	Electronic Properties of van der Waals Heterostructure of Black Phosphorus and MoS ₂ . Journal of Physical Chemistry C, 2018, 122, 7027-7032.	1.5	82
26	Debye temperature for binary alloys and its relationship with cohesive energy. Physica B: Condensed Matter, 2018, 531, 95-101.	1.3	9
27	Tuning the electronic properties of van der Waals heterostructures composed of black phosphorus and graphitic SiC. Physical Chemistry Chemical Physics, 2018, 20, 29333-29340.	1.3	17
28	Controllable Synthesis of Marks Decahedral Pd Nanoparticles via Etching. Journal of Nanoscience and Nanotechnology, 2018, 18, 8276-8281.	0.9	1
29	Structural stability of alloyed and core–shell Cu–Pt bimetallic nanoparticles. International Journal of Modern Physics B, 2017, 31, 1741012.	1.0	6
30	Size dependent structural stability of Mo, Ru, Y and Sc nanoparticles. Journal of Physics and Chemistry of Solids, 2017, 108, 1-8.	1.9	11
31	Temperature-dependent Raman spectra and thermal conductivity of multi-walled MoS2 nanotubes. Applied Physics Letters, 2017, 111, 123102.	1.5	15
32	Facile Synthesis of Ag@Pt Core-Shell Nanoparticles with Different Dendrites Pt Shells. ChemistrySelect, 2017, 2, 9344-9348.	0.7	4
33	Coating strategies for atomic layer deposition. Nanotechnology Reviews, 2017, 6, 527-547.	2.6	24
34	Large Marks-decahedral Pd nanoparticles synthesized by a modified hydrothermal method using a homogeneous reactor. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	5
35	Thermal stability of marks gold nanoparticles: A molecular dynamics simulation. International Journal of Modern Physics B, 2017, 31, 1741001.	1.0	0
36	Monoclinic Tungsten Oxide with {100} Facet Orientation and Tuned Electronic Band Structure for Enhanced Photocatalytic Oxidations. ACS Applied Materials & Interfaces, 2016, 8, 10367-10374.	4.0	106

WEIHONG QI

#	Article	IF	CITATIONS
37	Nanoscopic Thermodynamics. Accounts of Chemical Research, 2016, 49, 1587-1595.	7.6	118
38	Hydrothermal Synthesis of Ultrasmall Pt Nanoparticles as Highly Active Electrocatalysts for Methanol Oxidation. Nanomaterials, 2015, 5, 2203-2211.	1.9	36
39	Investigation of disclinations in Marks decahedral Pd nanoparticles by aberration-corrected HRTEM. Materials Letters, 2015, 152, 283-286.	1.3	15
40	Unification of Two Different Melting Mechanisms of Nanovoids. Journal of Physical Chemistry C, 2015, 119, 6843-6851.	1.5	7
41	Synthesis of Cu ₂ O Nanotubes with Efficient Photocatalytic Activity by Electrochemical Corrosion Method. Journal of Physical Chemistry C, 2015, 119, 22066-22071.	1.5	26
42	Size effect on order-disorder transition kinetics of FePt nanoparticles. Journal of Chemical Physics, 2014, 140, 044328.	1.2	18
43	Synthesis of Marksâ€Decahedral Pd Nanoparticles in Aqueous Solutions. Particle and Particle Systems Characterization, 2014, 31, 851-856.	1.2	17
44	Gibbs Free Energy and Size–Temperature Phase Diagram of Hafnium Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 10365-10369.	1.5	26