
David P Corey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9334821/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TRPA1 Contributes to Cold, Mechanical, and Chemical Nociception but Is Not Essential for Hair-Cell Transduction. Neuron, 2006, 50, 277-289.	3.8	1,134
2	The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nature Genetics, 1997, 17, 40-48.	9.4	1,051
3	TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature, 2004, 432, 723-730.	13.7	657
4	A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature, 1983, 306, 436-441.	13.7	636
5	Unconventional Myosins in Inner-Ear Sensory Epithelia. Journal of Cell Biology, 1997, 137, 1287-1307.	2.3	522
6	Lighting up the Senses: FM1-43 Loading of Sensory Cells through Nonselective Ion Channels. Journal of Neuroscience, 2003, 23, 4054-4065.	1.7	479
7	Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron, 1988, 1, 791-803.	3.8	477
8	Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron, 1991, 7, 985-994.	3.8	459
9	TRP channels in mechanosensation: direct or indirect activation?. Nature Reviews Neuroscience, 2007, 8, 510-521.	4.9	449
10	Expression in cochlea and retina of myosin VIIa, the gene product defective in Usher syndrome type 1B Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9815-9819.	3.3	408
11	TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3. Nature Neuroscience, 2012, 15, 70-80.	7.1	391
12	TRP2: A candidate transduction channel for mammalian pheromone sensory signaling. Proceedings of the United States of America, 1999, 96, 5791-5796.	3.3	387
13	BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 1459-1464.	3.3	341
14	A Chemical-Genetic Strategy Implicates Myosin-1c in Adaptation by Hair Cells. Cell, 2002, 108, 371-381.	13.5	318
15	Gene Expression by Mouse Inner Ear Hair Cells during Development. Journal of Neuroscience, 2015, 35, 6366-6380.	1.7	308
16	Ion channel expression by white matter glia: The O-2A glial progenitor cell. Neuron, 1990, 4, 507-524.	3.8	290
17	lon channel expression by white matter glia: I. Type 2 astrocytes and oligodendrocytes. Glia, 1988, 1, 10-30.	2.5	280
18	TRPA1 Modulates Mechanotransduction in Cutaneous Sensory Neurons. Journal of Neuroscience, 2009, 29, 4808-4819.	1.7	280

#	Article	IF	CITATIONS
19	Ion channel expression by white matter glia: The type-1 astrocyte. Neuron, 1990, 5, 527-544.	3.8	270
20	In Search of the Hair-Cell Gating Spring. Structure, 2005, 13, 669-682.	1.6	262
21	High levels of AAV vector integration into CRISPR-induced DNA breaks. Nature Communications, 2019, 10, 4439.	5.8	257
22	An Ion Channel Essential for Sensing Chemical Damage. Journal of Neuroscience, 2007, 27, 11412-11415.	1.7	254
23	Calcium imaging of single stereocilia in hair cells: Localization of transduction channels at both ends of tip links. Neuron, 1995, 15, 1311-1321.	3.8	250
24	TMC1 Forms the Pore of Mechanosensory Transduction Channels in Vertebrate Inner Ear Hair Cells. Neuron, 2018, 99, 736-753.e6.	3.8	250
25	Proliferation of Functional Hair Cells in Vivo in the Absence of the Retinoblastoma Protein. Science, 2005, 307, 1114-1118.	6.0	240
26	The Ion Channel TRPA1 Is Required for Normal Mechanosensation and Is Modulated by Algesic Stimuli. Gastroenterology, 2009, 137, 2084-2095.e3.	0.6	232
27	Transport and Localization of the DEG/ENaC Ion Channel BNaC1α to Peripheral Mechanosensory Terminals of Dorsal Root Ganglia Neurons. Journal of Neuroscience, 2001, 21, 2678-2686.	1.7	222
28	A sodium channel defect in hyperkalemic periodic paralysis: Potassium-induced failure of inactivation. Neuron, 1991, 6, 619-626.	3.8	212
29	Multi-isotope imaging mass spectrometry reveals slow protein turnover in hair-cell stereocilia. Nature, 2012, 481, 520-524.	13.7	210
30	The Micromachinery of Mechanotransduction in Hair Cells. Annual Review of Neuroscience, 2007, 30, 339-365.	5.0	199
31	Glial and neuronal forms of the voltage-dependent sodium channel: characteristics and cell-type distribution. Neuron, 1989, 2, 1375-1388.	3.8	194
32	Mechanosensitive Channels: Multiplicity of Families and Gating Paradigms. Science Signaling, 2004, 2004, re4-re4.	1.6	181
33	Rescue of Hearing by Gene Delivery to Inner-Ear Hair Cells Using Exosome-Associated AAV. Molecular Therapy, 2017, 25, 379-391.	3.7	181
34	THE MOLECULES OF MECHANOSENSATION. Annual Review of Neuroscience, 1997, 20, 567-594.	5.0	168
35	Mechanoelectrical transduction by hair cells. Trends in Neurosciences, 1992, 15, 254-259.	4.2	162
36	Structure of a force-conveying cadherin bond essential for inner-ear mechanotransduction. Nature, 2012, 492, 128-132.	13.7	157

#	Article	IF	CITATIONS
37	Novel mutation in the TOR1A (DYT1) gene in atypical, early onset dystonia and polymorphisms in dystonia and early onset parkinsonism. Neurogenetics, 2001, 3, 133-143.	0.7	155
38	Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nature Medicine, 2019, 25, 1123-1130.	15.2	149
39	The TOR1A (DYT1) Gene Family and Its Role in Early Onset Torsion Dystonia. Genomics, 1999, 62, 377-384.	1.3	142
40	The Usher syndromes. American Journal of Medical Genetics Part A, 1999, 89, 158-166.	2.4	140
41	Vascular Defects and Sensorineural Deafness in a Mouse Model of Norrie Disease. Journal of Neuroscience, 2002, 22, 4286-4292.	1.7	136
42	Molecular Cloning and Domain Structure of Human Myosin-VIIa, the Gene Product Defective in Usher Syndrome 1B. Genomics, 1996, 36, 440-448.	1.3	135
43	New TRP Channels in Hearing and Mechanosensation. Neuron, 2003, 39, 585-588.	3.8	134
44	TRP channels in mechanosensation. Current Opinion in Neurobiology, 2005, 15, 350-357.	2.0	132
45	SHIELD: an integrative gene expression database for inner ear research. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav071.	1.4	128
46	Structural Determinants of Cadherin-23 Function in Hearing and Deafness. Neuron, 2010, 66, 85-100.	3.8	122
47	From Biological Cilia to Artificial Flow Sensors: Biomimetic Soft Polymer Nanosensors with High Sensing Performance. Scientific Reports, 2016, 6, 32955.	1.6	117
48	The PDZ Domain Protein PICK1 and the Sodium Channel BNaC1 Interact and Localize at Mechanosensory Terminals of Dorsal Root Ganglion Neurons and Dendrites of Central Neurons. Journal of Biological Chemistry, 2002, 277, 5203-5208.	1.6	116
49	Ca2+ Changes the Force Sensitivity of the Hair-Cell Transduction Channel. Biophysical Journal, 2006, 90, 124-139.	0.2	115
50	Essential role of retinoblastoma protein in mammalian hair cell development and hearing. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7345-7350.	3.3	115
51	Myosin and Adaptation by Hair Cells. Neuron, 1997, 19, 955-958.	3.8	113
52	Gene Transfer with AAV9-PHP.B Rescues Hearing in a Mouse Model of Usher Syndrome 3A and Transduces Hair Cells in a Non-human Primate. Molecular Therapy - Methods and Clinical Development, 2019, 13, 1-13.	1.8	110
53	Two mechanisms for transducer adaptation in vertebrate hair cells. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11730-11735.	3.3	106
54	Effects of genetic variations in the dystonia protein torsinA: identification of polymorphism at residue 216 as protein modifier. Human Molecular Genetics, 2006, 15, 1355-1364.	1.4	104

#	Article	IF	CITATIONS
55	Mechanoelectrical Transduction and Adaptation in Hair Cells of the Mouse Utricle, a Low-Frequency Vestibular Organ. Journal of Neuroscience, 1997, 17, 8739-8748.	1.7	101
56	Gene transfer into the mammalian inner ear using HSV-1 and vaccinia virus vectors. Hearing Research, 1999, 134, 1-8.	0.9	99
57	Mechanosensation and the DEG/ENaC Ion Channels. Science, 1996, 273, 323-324.	6.0	96
58	Localization of Myosin-lβ near Both Ends of Tip Links in Frog Saccular Hair Cells. Journal of Neuroscience, 1998, 18, 8637-8647.	1.7	92
59	The Nematode Degenerin UNC-105 Forms Ion Channels that Are Activated by Degeneration- or Hypercontraction-Causing Mutations. Neuron, 1998, 20, 1231-1241.	3.8	89
60	What is the hair cell transduction channel?. Journal of Physiology, 2006, 576, 23-28.	1.3	85
61	Mapping of Unconventional Myosins in Mouse and Human. Genomics, 1996, 36, 431-439.	1.3	84
62	Mechanical stimulation and micromanipulation with piezoelectric bimorph elements. Journal of Neuroscience Methods, 1980, 3, 183-202.	1.3	83
63	The Early Onset Dystonia Protein TorsinA Interacts with Kinesin Light Chain 1. Journal of Biological Chemistry, 2004, 279, 19882-19892.	1.6	80
64	Length regulation of mechanosensitive stereocilia depends on very slow actin dynamics and filament-severing proteins. Nature Communications, 2015, 6, 6855.	5.8	80
65	Sorting out a promiscuous superfamily: towards cadherin connectomics. Trends in Cell Biology, 2014, 24, 524-536.	3.6	79
66	Functional Expression of Exogenous Proteins in Mammalian Sensory Hair Cells Infected With Adenoviral Vectors. Journal of Neurophysiology, 1999, 81, 1881-1888.	0.9	76
67	C-MYC Transcriptionally Amplifies SOX2 Target Genes to Regulate Self-Renewal in Multipotent Otic Progenitor Cells. Stem Cell Reports, 2015, 4, 47-60.	2.3	75
68	Myosin-I nomenclature. Journal of Cell Biology, 2001, 155, 703-704.	2.3	71
69	Burning Cold: Involvement of TRPA1 in Noxious Cold Sensation. Journal of General Physiology, 2009, 133, 251-256.	0.9	64
70	Sliding Adhesion Confers Coherent Motion to Hair Cell Stereocilia and Parallel Gating to Transduction Channels. Journal of Neuroscience, 2010, 30, 9051-9063.	1.7	61
71	Myosin-VIIb, a Novel Unconventional Myosin, Is a Constituent of Microvilli in Transporting Epithelia. Genomics, 2001, 72, 285-296.	1.3	60
72	Live-cell imaging of actin dynamics reveals mechanisms of stereocilia length regulation in the inner ear. Nature Communications, 2015, 6, 6873.	5.8	60

#	Article	lF	CITATIONS
73	Tryptophanâ€rich basic protein (<scp>WRB</scp>) mediates insertion of the tailâ€anchored protein otoferlin and is required for hair cell exocytosis and hearing. EMBO Journal, 2016, 35, 2536-2552.	3.5	55
74	Tightrope act. Nature, 2004, 428, 901-903.	13.7	53
75	Heterodimeric capping protein is required for stereocilia length and width regulation. Journal of Cell Biology, 2017, 216, 3861-3881.	2.3	48
76	cDNA Cloning, Tissue Distribution, and Chromosomal Localization of Ocp2, a Gene Encoding a Putative Transcription-Associated Factor Predominantly Expressed in the Auditory Organs. Genomics, 1995, 27, 389-398.	1.3	47
77	An inner ear gene expression database. JARO - Journal of the Association for Research in Otolaryngology, 2002, 3, 140-148.	0.9	47
78	Are TMCs the Mechanotransduction Channels of Vertebrate Hair Cells?. Journal of Neuroscience, 2016, 36, 10921-10926.	1.7	43
79	Function and Dysfunction of TMC Channels in Inner Ear Hair Cells. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a033506.	2.9	40
80	AAV-S: A versatile capsid variant for transduction of mouse and primate inner ear. Molecular Therapy - Methods and Clinical Development, 2021, 21, 382-398.	1.8	40
81	Preclinical testing of AAV9-PHP.B for transgene expression in the non-human primate cochlea. Hearing Research, 2020, 394, 107930.	0.9	39
82	Genome-wide association analysis on normal hearing function identifies <i>PCDH20</i> and <i>SLC28A3</i> as candidates for hearing function and loss. Human Molecular Genetics, 2015, 24, 5655-5664.	1.4	37
83	The Genomic Structure of the Gene Defective in Usher Syndrome Type Ib (MYO7A). Genomics, 1997, 40, 73-79.	1.3	36
84	Mice lacking WRB reveal differential biogenesis requirements of tail-anchored proteins in vivo. Scientific Reports, 2016, 6, 39464.	1.6	35
85	Mechanosensation: Touch at the molecular level. Current Biology, 1996, 6, 541-543.	1.8	34
86	Noddy, a Mouse Harboring a Missense Mutation in Protocadherin-15, Reveals the Impact of Disrupting a Critical Interaction Site between Tip-Link Cadherins in Inner Ear Hair Cells. Journal of Neuroscience, 2013, 33, 4395-4404.	1.7	33
87	XIRP2, an Actin-Binding Protein Essential for Inner Ear Hair-Cell Stereocilia. Cell Reports, 2015, 10, 1811-1818.	2.9	32
88	Hair-Cell Mechanotransduction Persists in TRP Channel Knockout Mice. PLoS ONE, 2016, 11, e0155577.	1.1	32
89	Understanding inner ear development with gene expression profiling. Journal of Neurobiology, 2002, 53, 276-285.	3.7	29
90	The zebrafish <i>pinball wizard</i> gene encodes WRB, a tailâ€anchoredâ€protein receptor essential for innerâ€ear hair cells and retinal photoreceptors. Journal of Physiology, 2016, 594, 895-914.	1.3	29

#	Article	IF	CITATIONS
91	Sound Amplification in the Inner Ear. Neuron, 2000, 28, 1-9.	3.8	28
92	The α1 subunit of nicotinic acetylcholine receptors in the inner ear: transcriptional regulation by ATOH1 and coâ€expression with the γ subunit in hair cells. Journal of Neurochemistry, 2007, 103, 2651-2664.	2.1	27
93	Viral vectors for gene delivery to the inner ear. Hearing Research, 2020, 394, 107927.	0.9	26
94	Sensory transduction in the ear. Journal of Cell Science, 2003, 116, 1-3.	1.2	25
95	PKHD1L1 is a coat protein of hair-cell stereocilia and is required for normal hearing. Nature Communications, 2019, 10, 3801.	5.8	24
96	Single-molecule force spectroscopy reveals the dynamic strength of the hair-cell tip-link connection. Nature Communications, 2021, 12, 849.	5.8	24
97	Insect mechanoreception: What a long, strange TRP it's been. Current Biology, 2000, 10, R384-R387.	1.8	22
98	The Outer Pore and Selectivity Filter of TRPA1. PLoS ONE, 2016, 11, e0166167.	1.1	20
99	Mutant Sodium Channel for Tumor Therapy. Molecular Therapy, 2009, 17, 810-819.	3.7	18
100	Gene expression profiling identifies <i>Hes6</i> as a transcriptional target of ATOH1 in cochlear hair cells. FEBS Letters, 2007, 581, 4651-4656.	1.3	17
101	Mass spectrometry quantitation of proteins from small pools of developing auditory and vestibular cells. Scientific Data, 2018, 5, 180128.	2.4	16
102	Mechanical Transduction Processes in the Hair Cell. Springer Handbook of Auditory Research, 2017, , 75-111.	0.3	15
103	Electron Microscopy Techniques for Investigating Structure and Composition of Hair-Cell Stereociliary Bundles. Frontiers in Cell and Developmental Biology, 2021, 9, 744248.	1.8	13
104	Mechanical gating of the auditory transduction channel TMC1 involves the fourth and sixth transmembrane helices. Science Advances, 2022, 8, .	4.7	13
105	Sequence of the voltage-gated sodium channel β1-subunit in wild-type and in quivering mice. Molecular Brain Research, 1996, 42, 222-226.	2.5	10
106	Stringing the fiddle: the inner ear's two-part invention. Nature Neuroscience, 2007, 10, 1232-1233.	7.1	10
107	The Force Be With You: A Mechanoreceptor Channel in Proprioception and Touch. Neuron, 2010, 67, 349-351.	3.8	10
108	Cell biology of mechanotransduction in inner-ear hair cells. F1000 Biology Reports, 2009, 1, 58.	4.0	9

#	Article	IF	CITATIONS
109	PSIP1/LEDGF: a new gene likely involved in sensorineural progressive hearing loss. Scientific Reports, 2016, 5, 18568.	1.6	7
110	Engineering biomimetic hair bundle sensors for underwater sensing applications. AIP Conference Proceedings, 2018, , .	0.3	7
111	Weak lateral coupling between stereocilia of mammalian cochlear hair cells requires new stimulus methods to study the biomechanics of hearing. Proceedings of Meetings on Acoustics, 2013, , .	0.3	5
112	Serial scanning electron microscopy of anti-PKHD1L1 immuno-gold labeled mouse hair cell stereocilia bundles. Scientific Data, 2020, 7, 182.	2.4	4
113	Three Recombinant Engineered Antibodies against Recombinant Tags with High Affinity and Specificity. PLoS ONE, 2016, 11, e0150125.	1.1	3
114	In the Right Place at the Right Time: Is TMC1/2 the Transduction Channel for Hearing?. Cell Reports, 2015, 12, 1531-1532.	2.9	2
115	Tannous et al. Respond:. Molecular Therapy, 2009, 17, 1311-1312.	3.7	1
116	Design of a Tunable PDMS Force Delivery and Sensing Probe for Studying Mechanosensation. IEEE Sensors Journal, 2016, 16, 620-627.	2.4	1
117	Identification of Novel and Recurrent Variants in MYO15A in Ashkenazi Jewish Patients With Autosomal Recessive Nonsyndromic Hearing Loss. Frontiers in Genetics, 2021, 12, 737782.	1.1	1
118	A Gradient of Single-Channel Conductance in the Cochlea. Neuron, 2003, 40, 875-876.	3.8	0
119	Sensory systems: from molecules to percepts. Current Opinion in Neurobiology, 2008, 18, 355-356.	2.0	0
120	Molecular Mechanics of Tip-Link Cadherins. , 2011, , .		0
121	In search of the cochlear amplifier: New mechanical and molecular tools to probe transduction channel function. AIP Conference Proceedings, 2015, , .	0.3	0
122	Molecular and Cellular Mechanics (Part I): A moderated discussion. AIP Conference Proceedings, 2015,	0.3	0
123	Towards force spectroscopy of single tip-link bonds. AIP Conference Proceedings, 2015, , .	0.3	0
124	Single Molecule Force Spectroscopy of Hair-Cell Tip-Link Proteins. Biophysical Journal, 2016, 110, 196a.	0.2	0