Hirotomo Nishihara

List of Publications by Citations

Source: https://exaly.com/author-pdf/9334744/hirotomo-nishihara-publications-by-citations.pdf

Version: 2024-04-18

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

132 papers

5,257 citations

38 h-index

g-index

150 ext. papers

6,073 ext. citations

7.6 avg, IF

5.86 L-index

#	Paper	IF	Citations
132	Templated nanocarbons for energy storage. <i>Advanced Materials</i> , 2012 , 24, 4473-98	24	588
131	Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. <i>Scientific Reports</i> , 2013 , 3, 2975	4.9	467
130	Three-dimensionally arrayed and mutually connected 1.2-nm nanopores for high-performance electric double layer capacitor. <i>Journal of the American Chemical Society</i> , 2011 , 133, 1165-7	16.4	236
129	Production of colored pigments with amorphous arrays of black and white colloidal particles. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 7261-5	16.4	209
128	A possible buckybowl-like structure of zeolite templated carbon. <i>Carbon</i> , 2009 , 47, 1220-1230	10.4	203
127	Ordered Macroporous Silica by Ice Templating. <i>Chemistry of Materials</i> , 2005 , 17, 683-689	9.6	200
126	Enhancement mechanism of electrochemical capacitance in nitrogen-/boron-doped carbons with uniform straight nanochannels. <i>Langmuir</i> , 2009 , 25, 11961-8	4	177
125	Formation of monolithic silica gel microhoneycombs (SMHs) using pseudosteady state growth of microstructural ice crystals. <i>Chemical Communications</i> , 2004 , 874-5	5.8	155
124	High-Pressure Hydrogen Storage in Zeolite-Templated Carbon. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 3189-3196	3.8	150
123	Investigation of the ion storage/transfer behavior in an electrical double-layer capacitor by using ordered microporous carbons as model materials. <i>Chemistry - A European Journal</i> , 2009 , 15, 5355-63	4.8	133
122	4.4 V supercapacitors based on super-stable mesoporous carbon sheet made of edge-free graphene walls. <i>Energy and Environmental Science</i> , 2019 , 12, 1542-1549	35.4	101
121	Zeolite-templated carbons - three-dimensional microporous graphene frameworks. <i>Chemical Communications</i> , 2018 , 54, 5648-5673	5.8	95
120	Cellulose Nanofiber as a Distinct Structure-Directing Agent for Xylem-like Microhoneycomb Monoliths by Unidirectional Freeze-Drying. <i>ACS Nano</i> , 2016 , 10, 10689-10697	16.7	86
119	Preparation of Porous TiO2Cryogel Fibers through Unidirectional Freezing of Hydrogel Followed by Freeze-Drying. <i>Chemistry of Materials</i> , 2004 , 16, 4987-4991	9.6	85
118	Effect of Buffer Size around Nanosilicon Anode Particles for Lithium-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 6004-6011	3.8	74
117	Oxidation-Resistant and Elastic Mesoporous Carbon with Single-Layer Graphene Walls. <i>Advanced Functional Materials</i> , 2016 , 26, 6418-6427	15.6	70
116	Preparation of resorcinolEormaldehyde carbon cryogel microhoneycombs. <i>Carbon</i> , 2004 , 42, 899-901	10.4	68

(2008-2018)

115	Ultraporous nitrogen-doped zeolite-templated carbon for high power density aqueous-based supercapacitors. <i>Carbon</i> , 2018 , 129, 510-519	10.4	62
114	Carbon-coated mesoporous silica with hydrophobicity and electrical conductivity. <i>Carbon</i> , 2008 , 46, 48-5	53 0.4	61
113	Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. <i>Microporous and Mesoporous Materials</i> , 2003 , 63, 43-51	5.3	60
112	Large Pseudocapacitance in Quinone-Functionalized Zeolite-Templated Carbon. <i>Bulletin of the Chemical Society of Japan</i> , 2014 , 87, 250-257	5.1	58
111	Fast and reversible lithium storage in a wrinkled structure formed from Si nanoparticles during lithiation/delithiation cycling. <i>Journal of Power Sources</i> , 2013 , 222, 400-409	8.9	58
110	Enhanced electro-oxidation resistance of carbon electrodes induced by phosphorus surface groups. <i>Carbon</i> , 2015 , 95, 681-689	10.4	57
109	Electrochemical generation of oxygen-containing groups in an ordered microporous zeolite-templated carbon. <i>Carbon</i> , 2013 , 54, 94-104	10.4	53
108	Preparation of monolithic SiO2Al2O3 cryogels with inter-connected macropores through ice templating. <i>Journal of Materials Chemistry</i> , 2006 , 16, 3231-3236		53
107	Porous Carbon Fibers Containing Pores with Sizes Controlled at the figstrom Level by the Cavity Size of Pillar[6]arene. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 6466-9	16.4	47
106	Graphene-based ordered framework with a diverse range of carbon polygons formed in zeolite nanochannels. <i>Carbon</i> , 2018 , 129, 854-862	10.4	46
105	Formation of crosslinked-fullerene-like framework as negative replica of zeolite Y. <i>Carbon</i> , 2013 , 62, 455-464	10.4	46
104	General Relationship between Hydrogen Adsorption Capacities at 77 and 298 K and Pore Characteristics of the Porous Adsorbents. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 10529-10540	3.8	46
103	Morphology of resorcinolformaldehyde gels obtained through ice-templating. <i>Carbon</i> , 2005 , 43, 1563-1	516054	46
102	A Directional Strain Sensor Based on Anisotropic Microhoneycomb Cellulose Nanofiber-Carbon Nanotube Hybrid Aerogels Prepared by Unidirectional Freeze Drying. <i>Small</i> , 2019 , 15, e1805363	11	46
101	Synthesis of ordered carbonaceous frameworks from organic crystals. <i>Nature Communications</i> , 2017 , 8, 109	17.4	45
100	Densification of ordered microporous carbons and controlling their micropore size by hot-pressing. <i>Carbon</i> , 2007 , 45, 2011-2016	10.4	43
99	Preparation of mesoporous carbon gels from an inexpensive combination of phenol and formaldehyde. <i>Carbon</i> , 2005 , 43, 2628-2630	10.4	43
98	Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. <i>Journal of Materials Chemistry</i> , 2008 , 18, 3662		41

97	Li-rich Li-Si alloy as a lithium-containing negative electrode material towards high energy lithium-ion batteries. <i>Scientific Reports</i> , 2015 , 5, 8085	4.9	40
96	Preparation of resorcinol formaldehyde (RF) carbon gels: Use of ultrasonic irradiation followed by microwave drying. <i>Journal of Non-Crystalline Solids</i> , 2006 , 352, 5683-5686	3.9	40
95	Morphology maps of ice-templated silica gels derived from silica hydrogels and hydrosols. <i>Microporous and Mesoporous Materials</i> , 2008 , 116, 166-170	5.3	38
94	Improvement of mesoporosity of carbon cryogels by ultrasonic irradiation. <i>Carbon</i> , 2005 , 43, 525-531	10.4	35
93	An organic proton battery employing two redox-active quinones trapped within the nanochannels of zeolite-templated carbon. <i>Carbon</i> , 2016 , 107, 831-836	10.4	35
92	Adsorption and diffusion of atomic hydrogen on a curved surface of microporous carbon: A theoretical study. <i>Chemical Physics Letters</i> , 2010 , 495, 251-255	2.5	34
91	Pseudocapacitance of zeolite-templated carbon in organic electrolytes. <i>Energy Storage Materials</i> , 2015 , 1, 35-41	19.4	31
90	Effect of Heteroatoms in Ordered Microporous Carbons on Their Electrochemical Capacitance. <i>Langmuir</i> , 2016 , 32, 11997-12004	4	31
89	Remarkable performance improvement of inexpensive ball-milled Si nanoparticles by carbon-coating for Li-ion batteries. <i>Journal of Power Sources</i> , 2016 , 319, 99-103	8.9	31
88	Fine Dispersion of Pt4B Subnanoclusters and Pt Single Atoms over Porous Carbon Supports and Their Structural Analyses with X-ray Absorption Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 7892-7902	3.8	30
87	A Nacre-Like Carbon Nanotube Sheet for High Performance Li-Polysulfide Batteries with High Sulfur Loading. <i>Advanced Science</i> , 2018 , 5, 1800384	13.6	30
86	Insight into the origin of carbon corrosion in positive electrodes of supercapacitors. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 7480-7488	13	29
85	Beads-Milling of Waste Si Sawdust into High-Performance Nanoflakes for Lithium-Ion Batteries. <i>Scientific Reports</i> , 2017 , 7, 42734	4.9	28
84	Fabrication of a Highly Conductive Ordered Porous Electrode by Carbon-Coating of a Continuous Mesoporous Silica Film. <i>Chemistry of Materials</i> , 2011 , 23, 3144-3151	9.6	27
83	3D interconnected macroporous carbon monoliths prepared by ultrasonic irradiation. <i>Carbon</i> , 2005 , 43, 2808-2811	10.4	27
82	Lamellar MXene Composite Aerogels with Sandwiched Carbon Nanotubes Enable Stable LithiumBulfur Batteries with a High Sulfur Loading. <i>Advanced Functional Materials</i> , 2021 , 31, 2100793	15.6	27
81	Force-driven reversible liquid-gas phase transition mediated by elastic nanosponges. <i>Nature Communications</i> , 2019 , 10, 2559	17.4	25
80	Experimental and Theoretical Studies of Hydrogen/Deuterium Spillover on Pt-Loaded Zeolite-Templated Carbon. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 9551-9559	3.8	25

(2009-2012)

79	Production of l-theanine using glutaminase encapsulated in carbon-coated mesoporous silica with high pH stability. <i>Biochemical Engineering Journal</i> , 2012 , 68, 207-214	4.2	25
78	Structure and magnetic properties of curved graphene networks and the effects of bromine and potassium adsorption. <i>Physical Review B</i> , 2010 , 81,	3.3	24
77	Influence of surfactants on porous properties of carbon cryogels prepared by solgel polycondensation of resorcinol and formaldehyde. <i>Carbon</i> , 2003 , 41, 2981-2990	10.4	24
76	Porous microfibers and microhoneycombs synthesized by ice templating. <i>Catalysis Surveys From Asia</i> , 2006 , 10, 161-171	2.8	23
75	Photocatalytic performance of TiO2-zeolite templated carbon composites in organic contaminant degradation. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 25004-7	3.6	22
74	Preparation of titanialilica cryogels with controlled shapes and photocatalysis through unidirectional freezing. <i>Materials Letters</i> , 2010 , 64, 959-961	3.3	22
73	Carbon-coated mesoporous silica as an electrode material. <i>Microporous and Mesoporous Materials</i> , 2010 , 132, 421-427	5.3	21
72	Characterization of a zeolite-templated carbon by electrochemical quartz crystal microbalance and in situ Raman spectroscopy. <i>Carbon</i> , 2015 , 89, 63-73	10.4	20
71	Production of Colored Pigments with Amorphous Arrays of Black and White Colloidal Particles. <i>Angewandte Chemie</i> , 2013 , 125, 7402-7406	3.6	19
70	CarbonBarbon asymmetric aqueous capacitor by pseudocapacitive positive and stable negative electrodes. <i>Carbon</i> , 2014 , 67, 792-794	10.4	18
69	Carbon-rich materials with three-dimensional ordering at the angstrom level. <i>Chemical Science</i> , 2020 , 11, 5866-5873	9.4	17
68	Binderless thin films of zeolite-templated carbon electrodes useful for electrochemical microcapacitors with ultrahigh rate performance. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 10331-4	1 ^{3.6}	17
67	Formation mechanism of zeolite-templated carbons. <i>Tanso</i> , 2017 , 2017, 169-174	0.1	16
66	Successful functionalization of superporous zeolite templated carbon using aminobenzene acids and electrochemical methods. <i>Carbon</i> , 2016 , 99, 157-166	10.4	16
65	Vanadium-Ion Redox Reactions in a Three-Dimensional Network of Reduced Graphite Oxide. <i>ChemElectroChem</i> , 2016 , 3, 650-657	4.3	16
64	Control of pore distribution of porous carbons derived from Mg2+ porous coordination polymers. <i>Inorganic Chemistry Frontiers</i> , 2015 , 2, 473-476	6.8	15
63	Enhanced hydrogen spillover to fullerene at ambient temperature. <i>Chemical Communications</i> , 2018 , 54, 3327-3330	5.8	15
62	Control of Acid-Site Location of MFI Zeolite by Catalytic Cracking of Silane and Its Application to Olefin Synthesis from Acetone. <i>Journal of Chemical Engineering of Japan</i> , 2009 , 42, S162-S167	0.8	14

61	Conversion of silica nanoparticles into Si nanocrystals through electrochemical reduction. <i>Nanoscale</i> , 2014 , 6, 10574-83	7.7	13
60	Reversible pore size control of elastic microporous material by mechanical force. <i>Chemistry - A European Journal</i> , 2013 , 19, 13009-16	4.8	13
59	Boron and nitrogen co-doped ordered microporous carbons with high surface areas. <i>Chemical Communications</i> , 2017 , 53, 13348-13351	5.8	13
58	Effect of carbon surface on degradation of supercapacitors in a negative potential range. <i>Journal of Power Sources</i> , 2020 , 457, 228042	8.9	12
57	Easy fabrication of superporous zeolite templated carbon electrodes by electrospraying on rigid and flexible substrates. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4610-4618	13	12
56	Amorphous water in three-dimensional confinement of zeolite-templated carbon. <i>Chemical Physics Letters</i> , 2013 , 571, 54-60	2.5	12
55	Submicron mesoporous carbon spheres by ultrasonic emulsification. <i>Journal of Porous Materials</i> , 2008 , 15, 265-270	2.4	12
54	Fabrication of Si nanopowder from Si swarf and application to high-capacity and low cost Li-ion batteries. <i>Journal of Alloys and Compounds</i> , 2017 , 720, 529-540	5.7	11
53	Structural Coloration of a Colloidal Amorphous Array is Intensified by Carbon Nanolayers. <i>Langmuir</i> , 2018 , 34, 4282-4288	4	11
52	Porous Carbon Fibers Containing Pores with Sizes Controlled at the figstrom Level by the Cavity Size of Pillar[6]arene. <i>Angewandte Chemie</i> , 2015 , 127, 6566-6569	3.6	11
51	Path integral molecular dynamics for hydrogen adsorption site of zeolite-templated carbon with semi-empirical PM3 potential. <i>Computational and Theoretical Chemistry</i> , 2011 , 975, 128-133	2	11
50	Synthesis of Ordered Carbonaceous Framework with Microporosity from Porphyrin with Ethynyl Groups. <i>Chemistry Letters</i> , 2020 , 49, 619-623	1.7	10
49	Enhanced hydrogen chemisorption and spillover on non-metallic nickel subnanoclusters. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 12523-12531	13	10
48	Formation of Foam-like Microstructural Carbon Material by Carbonization of Porous Coordination Polymers through a Ligand-Assisted Foaming Process. <i>Chemistry - A European Journal</i> , 2015 , 21, 13278	-8 3 .8	9
47	Fabrication and characterization of magnetic nanoporous zeolite templated carbon. <i>Journal of Physics and Chemistry of Solids</i> , 2010 , 71, 565-568	3.9	9
46	Assembling of nanoparticles using ice crystals. <i>Materials Chemistry and Physics</i> , 2010 , 123, 347-350	4.4	9
45	A Simple Nano-Templating Method Using Zeolite Y Toward the Formation of Carbon Schwarzites. <i>Frontiers in Materials</i> , 2019 , 6,	4	8
44	Unusual Redox Behavior of Ruthenocene Confined in the Micropores of Activated Carbon. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 15205-15215	3.8	8

(2011-2014)

43	Preparation of Highly Dispersed Pt Nanoparticles Supported on Zeolite-templated Carbon and Catalytic Application in Hydrogenation Reaction. <i>Chemistry Letters</i> , 2014 , 43, 1794-1796	1.7	8
42	Zeolite-Templated Carbon [Its Unique Characteristics and Applications 2012 , 295-322		8
41	Synthesis of graphene mesosponge via catalytic methane decomposition on magnesium oxide. Journal of Materials Chemistry A, 2021 , 9, 14296-14308	13	8
40	Improvement of Cyclability of Li-Ion Batteries Using C-Coated Si Nanopowder Electrode Fabricated from Si Swarf with Limitation of Delithiation Capacity. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A995-A1001	3.9	7
39	Quantifying Carbon Edge Sites on Depressing Hydrogen Evolution Reaction Activity. <i>Nano Letters</i> , 2020 , 20, 5885-5892	11.5	6
38	Nuclear quantum effect on hydrogen adsorption site of zeolite-templated carbon model using path integral molecular dynamics. <i>Journal of Alloys and Compounds</i> , 2011 , 509, S868-S871	5.7	6
37	Water-dispersible "carbon nanopods" with controllable graphene layer orientation. <i>Chemical Communications</i> , 2009 , 4554-6	5.8	6
36	The carbonization of aromatic molecules with three-dimensional structures affords carbon materials with controlled pore sizes at the figstrom-level. <i>Communications Chemistry</i> , 2021 , 4,	6.3	6
35	Microsphere Assemblies via Phosphonate Monoester Coordination Chemistry. <i>Chemistry - A European Journal</i> , 2018 , 24, 1533-1538	4.8	5
34	Synthesis and Photoproperties of Edge-functionalized Zeolite-templated Carbon with Bromine or Carbazole Groups. <i>Chemistry Letters</i> , 2016 , 45, 601-603	1.7	5
33	Magnetic properties of hostguest material using network of curved nanocarbon sheet. <i>Journal of Physics and Chemistry of Solids</i> , 2012 , 73, 1436-1439	3.9	5
32	Phase Diagram of 4He Film in 3D Nanopores of ZTC. Journal of Low Temperature Physics, 2011 , 162, 565	5- <u>5</u> .732	5
31	Template synthesis of carbon-based uniform nanoporous materials and their applications for energy storage. <i>Tanso</i> , 2011 , 2011, 89-95	0.1	5
30	Iron porphyrin-derived ordered carbonaceous frameworks. <i>Catalysis Today</i> , 2021 , 364, 164-171	5.3	5
29	pH-Dependent Morphology Control of Cellulose Nanofiber/Graphene Oxide Cryogels. <i>Small</i> , 2021 , 17, e2005564	11	5
28	Scalable nanoporous carbon films allow line-of-sight 3D atomic layer deposition of Pt: towards a new generation catalyst layer for PEM fuel cells. <i>Materials Horizons</i> , 2021 , 8, 2451-2462	14.4	5
27	Nuclear magnetic resonance study of zeolite-templated carbon. <i>Synthetic Metals</i> , 2016 , 221, 149-152	3.6	4
26	Isotope effect of proton and deuteron adsorption site on zeolite-templated carbon using path integral molecular dynamics. <i>Theoretical Chemistry Accounts</i> , 2011 , 130, 1039-1042	1.9	4

25	Helium Film Formed in 1.2 nm Pore in Zeolite Templated Carbon. <i>Journal of Low Temperature Physics</i> , 2010 , 158, 275-280	1.3	4
24	Development of a simple NLDFT model for the analysis of adsorption isotherms on zeolite templated carbon (ZTC). <i>Carbon</i> , 2020 , 169, 205-213	10.4	4
23	Energy Storage: Templated Nanocarbons for Energy Storage (Adv. Mater. 33/2012). <i>Advanced Materials</i> , 2012 , 24, 4466-4466	24	3
22	Pyrene-Thiol-modified Pd Nanoparticles on Carbon Support: Kinetic Control by Steric Hinderance and Improved Stability by the Catalyst-Support Interaction. <i>ChemCatChem</i> , 2020 , 12, 5880-5887	5.2	3
21	A volatile redox mediator boosts the long-cycle performance of lithium-oxygen batteries. <i>Energy Storage Materials</i> , 2021 , 38, 571-580	19.4	3
20	Force-responsive ordered carbonaceous frameworks synthesized from Ni-porphyrin. <i>Chemical Communications</i> , 2021 , 57, 6007-6010	5.8	3
19	Elucidation of oxygen reduction reaction and nanostructure of platinum-loaded graphene mesosponge for polymer electrolyte fuel cell electrocatalyst. <i>Electrochimica Acta</i> , 2021 , 370, 137705	6.7	3
18	High-density monolithic pellets of double-sided graphene fragments based on zeolite-templated carbon. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 7503-7507	13	3
17	Central metal dependent modulation of induced-fit gas uptake in molecular porphyrin solids. <i>Chemical Communications</i> , 2018 , 54, 7822-7825	5.8	2
16	Synthesis of nano-carbons by using the template method. <i>Tanso</i> , 2008 , 2008, 307-315	0.1	2
15	Nano-Confinement of Insulating Sulfur in the Cathode Composite of All-Solid-State Li-S Batteries Using Flexible Carbon Materials with Large Pore Volumes. <i>ACS Applied Materials & Description</i> (2021, 13, 38613-38622)	9.5	2
14	Ordered carbonaceous frameworks: a new class of carbon materials with molecular-level design <i>Chemical Communications</i> , 2022 ,	5.8	2
13	Carbon tubules containing nanocrystalline SiC produced by the graphitization of sugar cane bagasse. <i>Carbon</i> , 2014 , 68, 814-817	10.4	1
12	Synthesis of zeolite-templated carbons for methane storage: A molecular simulation study. <i>Tanso</i> , 2018 , 2018, 197-203	0.1	1
11	Nanoscale characterization of the site-specific degradation of electric double-layer capacitor using scanning electrochemical cell microscopy. <i>Electrochemical Science Advances</i> ,e2100053		1
10	Pillar[6]quinone: facile synthesis, crystal structures and electrochemical properties. <i>Chemical Communications</i> , 2021 , 57, 6360-6363	5.8	1
9	Edgeless porous carbon coating for durable and powerful lead-carbon batteries. <i>Carbon</i> , 2021 , 185, 419	9-42.7	1
8	Porous nanographene formation on 🗟 lumina nanoparticles transition-metal-free methane activation <i>Chemical Science</i> , 2022 , 13, 3140-3146	9.4	1

LIST OF PUBLICATIONS

7	In-Depth Analysis of Key Factors Affecting the Catalysis of Oxidized Carbon Blacks for Cellulose Hydrolysis. <i>ACS Catalysis</i> , 2022 , 12, 892-905	13.1	1
6	One-Step Fabrication of Homogeneous Ta3N5 Crystal Photoanodes Using TaF5 Evaporation Supply for Photoelectrochemical Water Splitting. <i>ACS Applied Energy Materials</i> , 2021 , 4, 2690-2695	6.1	O
5	Coordination chemistry for innovative carbon-related materials. <i>Coordination Chemistry Reviews</i> , 2022 , 466, 214577	23.2	О
4	InnenrEktitelbild: Porous Carbon Fibers Containing Pores with Sizes Controlled at the Eigstrom Level by the Cavity Size of Pillar[6]arene (Angew. Chem. 22/2015). <i>Angewandte Chemie</i> , 2015 , 127, 675	1-6751	
3	Electronic structure studies of carbon materials by high energy-resolution carbon K-emission spectroscopy measurements. <i>Microscopy and Microanalysis</i> , 2008 , 14, 796-797	0.5	
2	Carbon deposition into nanospace through CVD. <i>Tanso</i> , 2007 , 2007, 345-351	0.1	
1	Formation of unique nanowhiskers on carbon gels. <i>Carbon</i> , 2004 , 42, 2119-2121	10.4	