
Linda J Reha-Krantz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9334743/publications.pdf Version: 2024-02-01

LINDA L PEHA-KDANTZ

#	Article	IF	CITATIONS
1	John W. (Jan) Drake: A Biochemical View of a Geneticist Par Excellence. Genetics, 2020, 216, 827-836.	2.9	Ο
2	Endometrial Carcinomas with <i>POLE</i> Exonuclease Domain Mutations Have a Favorable Prognosis. Clinical Cancer Research, 2016, 22, 2865-2873.	7.0	139
3	DNA polymerase 3′→5′ exonuclease activity: Different roles of the beta hairpin structure in family-B DNA polymerases. DNA Repair, 2015, 29, 36-46.	2.8	14
4	Engineering processive DNA polymerases with maximum benefit at minimum cost. Frontiers in Microbiology, 2014, 5, 380.	3.5	14
5	Targeted Mutagenesis of a Specific Gene in Yeast. Methods in Molecular Biology, 2014, 1163, 109-129.	0.9	7
6	Polbase: a repository of biochemical, genetic and structural information about DNA polymerases. Nucleic Acids Research, 2012, 40, D381-D387.	14.5	9
7	Structure of the 2-Aminopurine-Cytosine Base Pair Formed in the Polymerase Active Site of the RB69 Y567A-DNA Polymerase. Biochemistry, 2011, 50, 10136-10149.	2.5	28
8	Drug-Sensitive DNA Polymerase δ Reveals a Role for Mismatch Repair in Checkpoint Activation in Yeast. Genetics, 2011, 189, 1211-1224.	2.9	9
9	DNA polymerase proofreading: Multiple roles maintain genome stability. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1049-1063.	2.3	134
10	Identification of a New Motif in Family B DNA Polymerases by Mutational Analyses of the Bacteriophage T4 DNA Polymerase. Journal of Molecular Biology, 2010, 400, 295-308.	4.2	20
11	Kinetics of Mismatch Formation opposite Lesions by the Replicative DNA Polymerase from Bacteriophage RB69. Biochemistry, 2010, 49, 2317-2325.	2.5	19
12	The Use of 2-Aminopurine Fluorescence to Study DNA Polymerase Function. Methods in Molecular Biology, 2009, 521, 381-396.	0.9	20
13	Use of 2-Aminopurine Fluorescence To Study the Role of the β Hairpin in the Proofreading Pathway Catalyzed by the Phage T4 and RB69 DNA Polymerases. Biochemistry, 2008, 47, 6130-6137.	2.5	30
14	Recent Patents of Gene Sequences Relative to DNA Polymerases. Recent Patents on DNA & Gene Sequences, 2008, 2, 145-163.	0.7	6
15	DNA polymerase proofreading: active site switching catalyzed by the bacteriophage T4 DNA polymerase. Nucleic Acids Research, 2007, 35, 5452-5463.	14.5	39
16	Probing DNA Polymeraseâ^'DNA Interactions:  Examining the Template Strand in Exonuclease Complexes Using 2-Aminopurine Fluorescence and Acrylamide Quenching. Biochemistry, 2007, 46, 6559-6569.	2.5	24
17	Dynamics of Nucleotide Incorporation: Snapshots Revealed by 2-Aminopurine Fluorescence Studiesâ€. Biochemistry, 2006, 45, 2836-2844.	2.5	47
18	Multiplexed DNA sequencing-by-synthesis. Analytical Biochemistry, 2006, 348, 127-138.	2.4	18

Linda J Reha-Krantz

#	Article	IF	CITATIONS
19	Kinetics of error generation in homologous B-family DNA polymerases. Nucleic Acids Research, 2006, 34, 2528-2535.	14.5	20
20	A method to select for mutator DNA polymerase δs in Saccharomyces cerevisiae. Genome, 2006, 49, 403-410.	2.0	30
21	Sensitivity to Phosphonoacetic Acid. Genetics, 2005, 170, 569-580.	2.9	56
22	Using 2-Aminopurine Fluorescence To Detect Bacteriophage T4 DNA Polymeraseâ^'DNA Complexes That Are Important for Primer Extension and Proofreading Reactionsâ€. Biochemistry, 2005, 44, 15674-15684.	2.5	44
23	Progress towards single-molecule DNA sequencing: a one color demonstration. Journal of Biotechnology, 2003, 102, 1-14.	3.8	52
24	Differences in replication of a DNA template containing an ethyl phosphotriester by T4 DNA polymerase and Escherichia coli DNA polymerase I. Nucleic Acids Research, 2003, 31, 4965-4972.	14.5	16
25	Using 2-Aminopurine Fluorescence to Measure Incorporation of Incorrect Nucleotides by Wild Type and Mutant Bacteriophage T4 DNA Polymerases. Journal of Biological Chemistry, 2002, 277, 40640-40649.	3.4	62
26	Using 2-Aminopurine Fluorescence To Detect Base Unstacking in the Template Strand during Nucleotide Incorporation by the Bacteriophage T4 DNA Polymerase. Biochemistry, 2002, 41, 4399-4406.	2.5	43
27	Identification of a Mutant DNA Polymerase δ in <i>Saccharomyces cerevisiae</i> With an Antimutator Phenotype for Frameshift Mutations. Genetics, 2001, 158, 177-186.	2.9	27
28	Dinucleotide Repeat Expansion Catalyzed by Bacteriophage T4 DNA Polymerase in Vitro. Journal of Biological Chemistry, 2000, 275, 31528-31535.	3.4	22
29	Identification of Escherichia coli dnaE(polC) Mutants with Altered Sensitivity to 2′,3′-Dideoxyadenosine. Journal of Bacteriology, 2000, 182, 3942-3947.	2.2	7
30	Mutational and pH Studies of the 3′ → 5′ Exonuclease Activity of Bacteriophage T4 DNA Polymerase. Journal of Biological Chemistry, 1999, 274, 25151-25158.	3.4	26
31	In Vitro selection of sequence contexts which enhance bypass of abasic sites and tetrahydrofuran by T4 DNA polymerase holoenzyme 1 1Edited by J. M. Miller. Journal of Molecular Biology, 1999, 286, 1045-1057.	4.2	24
32	Exonucleaseâ^'Polymerase Active Site Partitioning of Primerâ^'Template DNA Strands and Equilibrium Mg2+ Binding Properties of Bacteriophage T4 DNA Polymerase. Biochemistry, 1998, 37, 10144-10155.	2.5	66
33	The Proofreading Pathway of Bacteriophage T4 DNA Polymerase. Journal of Biological Chemistry, 1998, 273, 22969-22976.	3.4	34
34	Effects of Bulky Polycyclic Aromatic Hydrocarbon Adducts on DNA Replication by Exonuclease-Deficient T7 and T4 DNA Polymerases. DNA and Cell Biology, 1998, 17, 541-549.	1.9	8
35	Identification of a transient excision intermediate at the crossroads between DNA polymerase extension and proofreading pathways. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3507-3512.	7.1	49
36	In search of a mutational hotspot. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 8556-8561.	7.1	50

Linda J Reha-Krantz

#	Article	IF	CITATIONS
37	Regulation of DNA Polymerase Exonucleolytic Proofreading Activity: Studies of Bacteriophage T4 "Antimutator―DNA Polymerases. Genetics, 1998, 148, 1551-1557.	2.9	40
38	Selection of bacteriophage T4 antimutator DNA polymerases: a link between proofreading and sensitivity to phosphonoacetic acid. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1996, 350, 9-16.	1.0	12
39	Replication of O6-Methylguanine-containing DNA by Repair and Replicative DNA Polymerases. Journal of Biological Chemistry, 1996, 271, 20088-20095.	3.4	27
40	Using 2-Aminopurine Fluorescence and Mutational Analysis to Demonstrate an Active Role of Bacteriophage T4 DNA Polymerase in Strand Separation Required for 3′→ 5′-Exonuclease Activity. Journal of Biological Chemistry, 1996, 271, 28903-28911.	3.4	53
41	[25] Use of genetic analyses to probe structure, function, and dynamics of bacteriophage T4 DNA polymerase. Methods in Enzymology, 1995, 262, 323-331.	1.0	17
42	Dynamics of Bacteriophage T4 DNA Polymerase Function: Identification of Amino Acid Residues that Affect Switching between Polymerase and 3′ → 5′ Exonuclease Activities. Journal of Molecular Biology, 1995, 254, 15-28.	4.2	91
43	Analysis of inhibitors of bacteriophage T4 DNA polymerase. Nucleic Acids Research, 1994, 22, 232-237.	14.5	12
44	Pre-Steady-State Kinetic Analysis of Sequence-Dependent Nucleotide Excision by the 3'-Exonuclease Activity of Bacteriophage T4 DNA Polymerase. Biochemistry, 1994, 33, 7576-7586.	2.5	121
45	Amino acid changes coded by bacteriophage T4 DNA polymerase mutator mutants. Journal of Molecular Biology, 1988, 202, 711-724.	4.2	97
46	Isolation of bacteriophage T4 DNA polymerase mutator mutants. Journal of Molecular Biology, 1986, 189, 261-272.	4.2	26
47	Structure-function studies of the bacteriophage T4 DNA polymerase. Journal of Molecular Biology, 1985, 186, 505-514.	4.2	14
48	Studies on the biochemical basis of mutation VI. Journal of Molecular Biology, 1981, 145, 677-695.	4.2	36
49	Studies on the biochemical basis of mutation. Journal of Molecular Biology, 1977, 116, 99-113.	4.2	46
50	Studies on the biochemical basis of spontaneous mutation. Journal of Molecular Biology, 1977, 116, 115-123.	4.2	82