Linda J Reha-Krantz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9334743/publications.pdf

Version: 2024-02-01

236925 265206 50 1,887 25 citations h-index papers

g-index 50 50 50 1312 docs citations times ranked citing authors all docs

42

#	Article	IF	CITATIONS
1	Endometrial Carcinomas with <i>POLE</i> Exonuclease Domain Mutations Have a Favorable Prognosis. Clinical Cancer Research, 2016, 22, 2865-2873.	7.0	139
2	DNA polymerase proofreading: Multiple roles maintain genome stability. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1049-1063.	2.3	134
3	Pre-Steady-State Kinetic Analysis of Sequence-Dependent Nucleotide Excision by the 3'-Exonuclease Activity of Bacteriophage T4 DNA Polymerase. Biochemistry, 1994, 33, 7576-7586.	2.5	121
4	Amino acid changes coded by bacteriophage T4 DNA polymerase mutator mutants. Journal of Molecular Biology, 1988, 202, 711-724.	4.2	97
5	Dynamics of Bacteriophage T4 DNA Polymerase Function: Identification of Amino Acid Residues that Affect Switching between Polymerase and $3\hat{a} \in 2$ \hat{a}^{\dagger} $\hat{a} \in 2$ Exonuclease Activities. Journal of Molecular Biology, 1995, 254, 15-28.	4.2	91
6	Studies on the biochemical basis of spontaneous mutation. Journal of Molecular Biology, 1977, 116, 115-123.	4.2	82
7	Exonucleaseâ^'Polymerase Active Site Partitioning of Primerâ^'Template DNA Strands and Equilibrium Mg2+ Binding Properties of Bacteriophage T4 DNA Polymerase. Biochemistry, 1998, 37, 10144-10155.	2.5	66
8	Using 2-Aminopurine Fluorescence to Measure Incorporation of Incorrect Nucleotides by Wild Type and Mutant Bacteriophage T4 DNA Polymerases. Journal of Biological Chemistry, 2002, 277, 40640-40649.	3.4	62
9	Sensitivity to Phosphonoacetic Acid. Genetics, 2005, 170, 569-580.	2.9	56
10	Using 2-Aminopurine Fluorescence and Mutational Analysis to Demonstrate an Active Role of Bacteriophage T4 DNA Polymerase in Strand Separation Required for 3′→ 5′-Exonuclease Activity. Journal of Biological Chemistry, 1996, 271, 28903-28911.	3.4	53
11	Progress towards single-molecule DNA sequencing: a one color demonstration. Journal of Biotechnology, 2003, 102, 1-14.	3.8	52
12	In search of a mutational hotspot. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 8556-8561.	7.1	50
13	Identification of a transient excision intermediate at the crossroads between DNA polymerase extension and proofreading pathways. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3507-3512.	7.1	49
14	Dynamics of Nucleotide Incorporation: Snapshots Revealed by 2-Aminopurine Fluorescence Studiesâ€. Biochemistry, 2006, 45, 2836-2844.	2.5	47
15	Studies on the biochemical basis of mutation. Journal of Molecular Biology, 1977, 116, 99-113.	4.2	46
16	Using 2-Aminopurine Fluorescence To Detect Bacteriophage T4 DNA Polymeraseâ^'DNA Complexes That Are Important for Primer Extension and Proofreading Reactionsâ€. Biochemistry, 2005, 44, 15674-15684.	2.5	44
17	Using 2-Aminopurine Fluorescence To Detect Base Unstacking in the Template Strand during Nucleotide Incorporation by the Bacteriophage T4 DNA Polymerase. Biochemistry, 2002, 41, 4399-4406.	2.5	43
18	Regulation of DNA Polymerase Exonucleolytic Proofreading Activity: Studies of Bacteriophage T4 "Antimutator―DNA Polymerases. Genetics, 1998, 148, 1551-1557.	2.9	40

#	Article	lF	CITATIONS
19	DNA polymerase proofreading: active site switching catalyzed by the bacteriophage T4 DNA polymerase. Nucleic Acids Research, 2007, 35, 5452-5463.	14.5	39
20	Studies on the biochemical basis of mutation VI. Journal of Molecular Biology, 1981, 145, 677-695.	4.2	36
21	The Proofreading Pathway of Bacteriophage T4 DNA Polymerase. Journal of Biological Chemistry, 1998, 273, 22969-22976.	3.4	34
22	A method to select for mutator DNA polymerase \hat{l} 's in Saccharomyces cerevisiae. Genome, 2006, 49, 403-410.	2.0	30
23	Use of 2-Aminopurine Fluorescence To Study the Role of the \hat{l}^2 Hairpin in the Proofreading Pathway Catalyzed by the Phage T4 and RB69 DNA Polymerases. Biochemistry, 2008, 47, 6130-6137.	2.5	30
24	Structure of the 2-Aminopurine-Cytosine Base Pair Formed in the Polymerase Active Site of the RB69 Y567A-DNA Polymerase. Biochemistry, 2011, 50, 10136-10149.	2.5	28
25	Replication of O6-Methylguanine-containing DNA by Repair and Replicative DNA Polymerases. Journal of Biological Chemistry, 1996, 271, 20088-20095.	3.4	27
26	Identification of a Mutant DNA Polymerase δin <i>Saccharomyces cerevisiae</i> With an Antimutator Phenotype for Frameshift Mutations. Genetics, 2001, 158, 177-186.	2.9	27
27	Isolation of bacteriophage T4 DNA polymerase mutator mutants. Journal of Molecular Biology, 1986, 189, 261-272.	4.2	26
28	Mutational and pH Studies of the $3\hat{a}\in^2\hat{a}\dagger'$ $5\hat{a}\in^2\hat{a}$ Exonuclease Activity of Bacteriophage T4 DNA Polymerase. Journal of Biological Chemistry, 1999, 274, 25151-25158.	3.4	26
29	In Vitro selection of sequence contexts which enhance bypass of abasic sites and tetrahydrofuran by T4 DNA polymerase holoenzyme 1 1Edited by J. M. Miller. Journal of Molecular Biology, 1999, 286, 1045-1057.	4.2	24
30	Probing DNA Polymeraseâ^'DNA Interactions:  Examining the Template Strand in Exonuclease Complexes Using 2-Aminopurine Fluorescence and Acrylamide Quenching. Biochemistry, 2007, 46, 6559-6569.	2.5	24
31	Dinucleotide Repeat Expansion Catalyzed by Bacteriophage T4 DNA Polymerase in Vitro. Journal of Biological Chemistry, 2000, 275, 31528-31535.	3.4	22
32	Kinetics of error generation in homologous B-family DNA polymerases. Nucleic Acids Research, 2006, 34, 2528-2535.	14.5	20
33	Identification of a New Motif in Family B DNA Polymerases by Mutational Analyses of the Bacteriophage T4 DNA Polymerase. Journal of Molecular Biology, 2010, 400, 295-308.	4.2	20
34	The Use of 2-Aminopurine Fluorescence to Study DNA Polymerase Function. Methods in Molecular Biology, 2009, 521, 381-396.	0.9	20
35	Kinetics of Mismatch Formation opposite Lesions by the Replicative DNA Polymerase from Bacteriophage RB69. Biochemistry, 2010, 49, 2317-2325.	2.5	19
36	Multiplexed DNA sequencing-by-synthesis. Analytical Biochemistry, 2006, 348, 127-138.	2.4	18

#	Article	IF	Citations
37	[25] Use of genetic analyses to probe structure, function, and dynamics of bacteriophage T4 DNA polymerase. Methods in Enzymology, 1995, 262, 323-331.	1.0	17
38	Differences in replication of a DNA template containing an ethyl phosphotriester by T4 DNA polymerase and Escherichia coli DNA polymerase I. Nucleic Acids Research, 2003, 31, 4965-4972.	14.5	16
39	Structure-function studies of the bacteriophage T4 DNA polymerase. Journal of Molecular Biology, 1985, 186, 505-514.	4.2	14
40	Engineering processive DNA polymerases with maximum benefit at minimum cost. Frontiers in Microbiology, 2014, 5, 380.	3. 5	14
41	DNA polymerase 3′→5′ exonuclease activity: Different roles of the beta hairpin structure in family-B DNA polymerases. DNA Repair, 2015, 29, 36-46.	2.8	14
42	Analysis of inhibitors of bacteriophage T4 DNA polymerase. Nucleic Acids Research, 1994, 22, 232-237.	14.5	12
43	Selection of bacteriophage T4 antimutator DNA polymerases: a link between proofreading and sensitivity to phosphonoacetic acid. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1996, 350, 9-16.	1.0	12
44	Drug-Sensitive DNA Polymerase δReveals a Role for Mismatch Repair in Checkpoint Activation in Yeast. Genetics, 2011, 189, 1211-1224.	2.9	9
45	Polbase: a repository of biochemical, genetic and structural information about DNA polymerases. Nucleic Acids Research, 2012, 40, D381-D387.	14.5	9
46	Effects of Bulky Polycyclic Aromatic Hydrocarbon Adducts on DNA Replication by Exonuclease-Deficient T7 and T4 DNA Polymerases. DNA and Cell Biology, 1998, 17, 541-549.	1.9	8
47	Identification of Escherichia coli dnaE(polC) Mutants with Altered Sensitivity to 2′,3′-Dideoxyadenosine. Journal of Bacteriology, 2000, 182, 3942-3947.	2.2	7
48	Targeted Mutagenesis of a Specific Gene in Yeast. Methods in Molecular Biology, 2014, 1163, 109-129.	0.9	7
49	Recent Patents of Gene Sequences Relative to DNA Polymerases. Recent Patents on DNA & Gene Sequences, 2008, 2, 145-163.	0.7	6
50	John W. (Jan) Drake: A Biochemical View of a Geneticist Par Excellence. Genetics, 2020, 216, 827-836.	2.9	0