
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9334401/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The relationship between cognitive failures and empathy. Personality and Individual Differences, 2022, 186, 111384.	1.6	5
2	Don't look now! Emotion-induced blindness: The interplay between emotion and attention. Attention, Perception, and Psychophysics, 2022, 84, 2741-2761.	0.7	2
3	Attentional control both helps and harms empathy. Cognition, 2021, 206, 104505.	1.1	15
4	Examining the effects of social anxiety and other individual differences on gaze-directed attentional shifts. Quarterly Journal of Experimental Psychology, 2021, 74, 771-785.	0.6	5
5	Does motivational intensity exist distinct from valence and arousal?. Emotion, 2021, 21, 1013-1028.	1.5	6
6	Using perceptual tasks to selectively measure magnocellular and parvocellular performance: Rationale and a user's guide. Psychonomic Bulletin and Review, 2021, 28, 1029-1050.	1.4	9
7	Both negative and positive task-irrelevant stimuli contract attentional breadth in individuals with high levels of negative affect. Cognition and Emotion, 2021, , 1-15.	1.2	4
8	No effect of spatial attention on the processing of a motion ensemble: Evidence from Posner cueing. Attention, Perception, and Psychophysics, 2021, , 1.	0.7	0
9	Does cultural background predict the spatial distribution of attention?. Culture and Brain, 2020, 8, 137-165.	0.3	7
10	A critical review of the cognitive and perceptual factors influencing attentional scaling and visual processing. Psychonomic Bulletin and Review, 2020, 27, 405-422.	1.4	13
11	A vigilance avoidance account of spatial selectivity in dual-stream emotion induced blindness. Psychonomic Bulletin and Review, 2020, 27, 322-329.	1.4	11
12	Standardizing measurement in psychological studies: On why one second has different value in a sprint versus a marathon. Behavior Research Methods, 2020, 52, 2338-2348.	2.3	13
13	The impact of scaling rather than shaping attention: Changes in the scale of attention using global motion inducers influence both spatial and temporal acuity Journal of Experimental Psychology: Human Perception and Performance, 2020, 46, 313-323.	0.7	8
14	Translating experimental paradigms into individual-differences research: Contributions, challenges, and practical recommendations. Consciousness and Cognition, 2019, 69, 14-25.	0.8	82
15	Changes in the spatial spread of attention with ageing. Acta Psychologica, 2018, 188, 188-199.	0.7	20
16	Parallel consolidation into visual working memory results in reduced precision representations. Vision Research, 2018, 149, 24-29.	0.7	5
17	Objects but not concepts modulate the size of the attended region. Quarterly Journal of Experimental Psychology, 2017, 70, 1353-1365.	0.6	3
18	Testing the generality of the zoom-lens model: Evidence for visual-pathway specific effects of attended-region size on perception. Attention, Perception, and Psychophysics, 2017, 79, 1147-1164.	0.7	15

MARK EDWARDS

#	Article	IF	CITATIONS
19	Temporal synchrony is an effective cue for grouping and segmentation in the absence of form cues. Journal of Vision, 2016, 16, 23.	0.1	7
20	The cost of parallel consolidation into visual working memory. Journal of Vision, 2016, 16, 1.	0.1	8
21	Object individuation is invariant to attentional diffusion: Changes in the size of the attended region do not interact with object-substitution masking. Cognition, 2016, 157, 358-364.	1.1	11
22	Selective spatial enhancement: Attentional spotlight size impacts spatial but not temporal perception. Psychonomic Bulletin and Review, 2016, 23, 1144-1149.	1.4	28
23	Categorical information influences conscious perception: An interaction between object-substitution masking and repetition blindness. Attention, Perception, and Psychophysics, 2016, 78, 1186-1202.	0.7	5
24	Role of form information in motion pooling and segmentation. Journal of Vision, 2015, 15, 19.	0.1	6
25	Evidence for parallel consolidation of motion direction and orientation into visual short-term memory. Journal of Vision, 2015, 15, 17-17.	0.1	13
26	Numerosity and density judgments: Biases for area but not for volume. Journal of Vision, 2015, 15, 18-18.	0.1	12
27	Altered visual perception near the hands: A critical review of attentional and neurophysiological models. Neuroscience and Biobehavioral Reviews, 2015, 55, 223-233.	2.9	41
28	Two objects or one? Similarity rather than complexity determines objecthood when resolving dynamic input Journal of Experimental Psychology: Human Perception and Performance, 2015, 41, 102-110.	0.7	15
29	Enhanced semantic priming in synesthetes independent of sensory binding. Consciousness and Cognition, 2015, 33, 443-456.	0.8	5
30	A magnocellular contribution to conscious perception via temporal object segmentation Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 948-959.	0.7	13
31	Information extraction during simultaneous motion processing. Vision Research, 2014, 95, 1-10.	0.7	3
32	Alterations to global but not local motion processing in long-term ecstasy (MDMA) users. Psychopharmacology, 2014, 231, 2611-2622.	1.5	2
33	The impact of recreational MDMA â€~ecstasy' use on global form processing. Journal of Psychopharmacology, 2014, 28, 1018-1029.	2.0	3
34	Altered visual perception in long-term ecstasy (MDMA) users. Psychopharmacology, 2013, 229, 155-165.	1.5	9
35	How many motion signals can be simultaneously perceived?. Vision Research, 2013, 76, 11-16.	0.7	5
36	Effect of form cues on 1D and 2D motion pooling. Vision Research, 2013, 76, 94-104.	0.7	7

#	Article	IF	CITATIONS
37	The shape of motion perception: Global pooling of transformational apparent motion. Journal of Vision, 2013, 13, 20-20.	0.1	10
38	Face Aftereffects Predict Individual Differences in Face Recognition Ability. Psychological Science, 2012, 23, 1279-1287.	1.8	66
39	Global face distortion aftereffects tap face-specific and shape-generic processes. Journal of Vision, 2012, 12, 11-11.	0.1	5
40	Adaptation state of the local-motion-pooling units determines the nature of the motion aftereffect to transparent motion. Vision Research, 2012, 64, 23-25.	0.7	3
41	No interaction of first- and second-order signals in the extraction of global-motion and optic-flow. Vision Research, 2011, 51, 352-361.	0.7	15
42	What shape are the neural response functions underlying opponent coding in face space? A psychophysical investigation. Vision Research, 2010, 50, 300-314.	0.7	47
43	Independence in the processing of first- and second-order motion signals at the local-motion-pooling level. Vision Research, 2010, 50, 261-270.	0.7	6
44	Solving the upside-down puzzle: Why do upright and inverted face aftereffects look alike?. Journal of Vision, 2010, 10, 1-1.	0.1	51
45	Vestibular Stimulation Affects Optic-Flow Sensitivity. Perception, 2010, 39, 1303-1310.	0.5	12
46	Adaptive pooling of visual motion signals by the human visual system revealed with a novel multi-element stimulus. Journal of Vision, 2009, 9, 4-4.	0.1	70
47	The detection of multiple global directions: Capacity limits with spatially segregated and transparent-motion signals. Journal of Vision, 2009, 9, 40-40.	0.1	14
48	Common-fate motion processing: Interaction of the On and Off pathways. Vision Research, 2009, 49, 429-438.	0.7	10
49	Spatial-frequency tuning in the pooling of one- and two-dimensional motion signals. Vision Research, 2009, 49, 2862-2869.	0.7	18
50	Relative Sensitivities to Large-Field Optic-Flow Patterns Varying in Direction and Speed. Perception, 2007, 36, 113-124.	0.5	39
51	Aftereffects for face attributes with different natural variability: Adapter position effects and neural models Journal of Experimental Psychology: Human Perception and Performance, 2007, 33, 570-592.	0.7	93
52	Motion streaks improve motion detection. Vision Research, 2007, 47, 828-833.	0.7	54
53	An oblique effect for transparent-motion detection caused by variation in global-motion direction-tuning bandwidths. Vision Research, 2007, 47, 1411-1423.	0.7	12
54	A long-term ecstasy-related change in visual perception. Psychopharmacology, 2007, 193, 437-446.	1.5	15

#	Article	IF	CITATIONS
55	An extension of the transparent-motion detection limit using speed-tuned global-motion systems. Vision Research, 2006, 46, 1440-1449.	0.7	18
56	Pushing the limits of transparent-motion detection with binocular disparity. Vision Research, 2006, 46, 2615-2624.	0.7	26
57	Categorical and Coordinate Relations in Faces, or Fechner's Law and Face Space Instead?. Journal of Experimental Psychology: Human Perception and Performance, 2005, 31, 1181-1198.	0.7	16
58	The perception of motion transparency: A signal-to-noise limit. Vision Research, 2005, 45, 1877-1884.	0.7	39
59	Contrast-reversing global-motion stimuli reveal local interactions between first- and second-order motion signals. Vision Research, 2004, 44, 1941-1950.	0.7	21
60	Sensitivity to the acceleration of looming stimuli. Clinical and Experimental Ophthalmology, 2003, 31, 258-261.	1.3	15
61	Motion distorts perceived depth. Vision Research, 2003, 43, 1799-1804.	0.7	28
62	Envelope size-tuning for transient disparity vergence. Vision Research, 2001, 41, 1695-1707.	0.7	7
63	Envelope size tuning for stereo-depth perception of small and large disparities. Vision Research, 2001, 41, 2555-2567.	0.7	13
64	Spatial interactions minimize relative disparity between adjacent surfaces. Vision Research, 2001, 41, 2995-3007.	0.7	15
65	First- and second-order processing in transient stereopsis. Vision Research, 2000, 40, 2645-2651.	0.7	24
66	Depth aliasing by the transient-stereopsis system. Vision Research, 1999, 39, 4333-4340.	0.7	17
67	Orientation and luminance polarity tuning of the transient-vergence system. Vision Research, 1999, 39, 575-584.	0.7	14
68	Orientation tuning of the transient-stereopsis system. Vision Research, 1999, 39, 2717-2727.	0.7	31
69	Global-motion detection with transparent-motion signals. Vision Research, 1999, 39, 2239-2249.	0.7	34
70	Extraction of depth from opposite-contrast stimuli: transient system can, sustained system can't. Vision Research, 1999, 39, 4010-4017.	0.7	37
71	Luminance, contrast and spatial-frequency tuning of the transient-vergence system. Vision Research, 1998, 38, 705-717.	0.7	23
72	Independent speed-tuned global-motion systems. Vision Research, 1998, 38, 1573-1580.	0.7	61

#	Article	IF	CITATIONS
73	Spatial-frequency and contrast tuning of the transient-stereopsis system. Vision Research, 1998, 38, 3057-3068.	0.7	47
74	Discrimination of global-motion signal strength. Vision Research, 1998, 38, 3051-3056.	0.7	10
75	Simultaneous motion contrast across space: Involvement of second-order motion?. Vision Research, 1997, 37, 199-214.	0.7	23
76	Dual multiple-scale processing for motion in the human visual System. Vision Research, 1997, 37, 2685-2698.	0.7	138
77	Global-motion Perception: Interaction of Chromatic and Luminance Signals. Vision Research, 1996, 36, 2423-2431.	0.7	61
78	Contrast Sensitivity of the Motion System. Vision Research, 1996, 36, 2411-2421.	0.7	55
79	Global motion perception: No interaction between the first- and second-order motion pathways. Vision Research, 1995, 35, 2589-2602.	0.7	92
80	Global motion perception: Interaction of the ON and OFF pathways. Vision Research, 1994, 34, 2849-2858.	0.7	101
81	Asymmetries in the Sensitivity to Motion in Depth: A Centripetal Bias. Perception, 1993, 22, 1013-1023.	0.5	122
82	Colour Inputs to Random-Dot Stereopsis. Perception, 1992, 21, 717-729.	0.5	23