
Giovanna Lombardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9334225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autocrine vitamin D signaling switches off pro-inflammatory programs of TH1 cells. Nature Immunology, 2022, 23, 62-74.	14.5	105
2	Isolation and freezing of human peripheral blood mononuclear cells from pregnant patients. STAR Protocols, 2022, 3, 101204.	1.2	2
3	Pluripotent Stem Cell-Derived Hepatocytes Inhibit T Cell Proliferation In Vitro through Tryptophan Starvation. Cells, 2022, 11, 24.	4.1	6
4	Transplantation Without Overimmunosuppression (TWO) study protocol: a phase 2b randomised controlled single-centre trial of regulatory T cell therapy to facilitate immunosuppression reduction in living donor kidney transplant recipients. BMJ Open, 2022, 12, e061864.	1.9	15
5	B lymphocytes contribute to indirect pathway T cell sensitization via acquisition of extracellular vesicles. American Journal of Transplantation, 2021, 21, 1415-1426.	4.7	12
6	Feasibility, long-term safety, and immune monitoring of regulatory T cell therapy in living donor kidney transplant recipients. American Journal of Transplantation, 2021, 21, 1603-1611.	4.7	79
7	The Theoretical Basis of In Utero Hematopoietic Stem Cell Transplantation and Its Use in the Treatment of Blood Disorders. Stem Cells and Development, 2021, 30, 49-58.	2.1	5
8	Purification and Immunophenotypic Characterization of Human CD24hiCD38hi and CD24hiCD27+ Regulatory B in. Methods in Molecular Biology, 2021, 2270, 451-467.	0.9	0
9	Spatiotemporal in vivo tracking of polyclonal human regulatory T cells (Tregs) reveals a role for innate immune cells in Treg transplant recruitment. Molecular Therapy - Methods and Clinical Development, 2021, 20, 324-336.	4.1	16
10	PD-L1 signaling on human memory CD4+ T cells induces a regulatory phenotype. PLoS Biology, 2021, 19, e3001199.	5.6	32
11	Isolation and expansion of thymusâ€derived regulatory T cells for use in pediatric heart transplant patients. European Journal of Immunology, 2021, 51, 2086-2092.	2.9	6
12	Immunological considerations and challenges for regenerative cellular therapies. Communications Biology, 2021, 4, 798.	4.4	44
13	Chimeric antigen receptorâ€modified human regulatory T cells that constitutively express ILâ€10 maintain their phenotype and are potently suppressive. European Journal of Immunology, 2021, 51, 2522-2530.	2.9	15
14	Augmented Expansion of Treg Cells From Healthy and Autoimmune Subjects via Adult Progenitor Cell Co-Culture. Frontiers in Immunology, 2021, 12, 716606.	4.8	6
15	Nox2-deficient Tregs improve heart transplant outcomes via their increased graft recruitment and enhanced potency. JCI Insight, 2021, 6, .	5.0	6
16	Advances in Liver Transplantation: where are we in the pursuit of transplantation tolerance?. European Journal of Immunology, 2021, 51, 2373-2386.	2.9	6
17	Regulatory T Cells in Pregnancy Adverse Outcomes: A Systematic Review and Meta-Analysis. Frontiers in Immunology, 2021, 12, 737862.	4.8	18
18	IL-36 Promotes Systemic IFN-I Responses in Severe Forms of Psoriasis. Journal of Investigative Dermatology, 2020, 140, 816-826.e3.	0.7	64

#	Article	IF	CITATIONS
19	Applicability, safety, and biological activity of regulatory T cell therapy in liver transplantation. American Journal of Transplantation, 2020, 20, 1125-1136.	4.7	139
20	Treg sensitivity to FasL and relative IL-2 deprivation drive idiopathic aplastic anemia immune dysfunction. Blood, 2020, 136, 885-897.	1.4	14
21	The Future of Regulatory T Cell Therapy: Promises and Challenges of Implementing CAR Technology. Frontiers in Immunology, 2020, 11, 1608.	4.8	57
22	Regulatory T Cell Extracellular Vesicles Modify T-Effector Cell Cytokine Production and Protect Against Human Skin Allograft Damage. Frontiers in Cell and Developmental Biology, 2020, 8, 317.	3.7	32
23	Beyond bacterial killing: NADPH oxidase 2 is an immunomodulator. Immunology Letters, 2020, 221, 39-48.	2.5	32
24	In utero Therapy for the Treatment of Sickle Cell Disease: Taking Advantage of the Fetal Immune System. Frontiers in Cell and Developmental Biology, 2020, 8, 624477.	3.7	2
25	Potential Application of T-Follicular Regulatory Cell Therapy in Transplantation. Frontiers in Immunology, 2020, 11, 612848.	4.8	10
26	Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials. Lancet, The, 2020, 395, 1627-1639.	13.7	266
27	Regulatory B cells: Development, phenotypes, functions, and role in transplantation. Immunological Reviews, 2019, 292, 164-179.	6.0	46
28	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
29	Protease Activated Receptor 4 as a Novel Modulator of Regulatory T Cell Function. Frontiers in Immunology, 2019, 10, 1311.	4.8	12
30	Mesenchymal stem cells inhibit T-cell function through conserved induction of cellular stress. PLoS ONE, 2019, 14, e0213170.	2.5	43
31	Ways Forward for Tolerance-Inducing Cellular Therapies- an AFACTT Perspective. Frontiers in Immunology, 2019, 10, 181.	4.8	37
32	Correction of Defective T-Regulatory Cells From Patients With Crohn's Disease by ExÂVivo Ligation of Retinoic Acid Receptor-α. Gastroenterology, 2019, 156, 1775-1787.	1.3	40
33	ILâ€⊋ therapy preferentially expands adoptively transferred donorâ€specific Tregs improving skin allograft survival. American Journal of Transplantation, 2019, 19, 2092-2100.	4.7	33
34	Getting to the Heart of the Matter: The Role of Regulatory T-Cells (Tregs) in Cardiovascular Disease (CVD) and Atherosclerosis. Frontiers in Immunology, 2019, 10, 2795.	4.8	53
35	Application of carbon nanotubes in cancer vaccines: Achievements, challenges and chances. Journal of Controlled Release, 2019, 297, 79-90.	9.9	59
36	Past, Present, and Future of Regulatory T Cell Therapy in Transplantation and Autoimmunity. Frontiers in Immunology, 2019, 10, 43.	4.8	371

#	Article	IF	CITATIONS
37	Regulatory T cell-derived extracellular vesicles modify dendritic cell function. Scientific Reports, 2018, 8, 6065.	3.3	143
38	Spatial and Single-Cell Transcriptional Profiling Identifies Functionally Distinct Human Dermal Fibroblast Subpopulations. Journal of Investigative Dermatology, 2018, 138, 811-825.	0.7	306
39	Immune modulation by apoptotic dental pulp stem cells <i>in vivo</i> . Immunotherapy, 2018, 10, 201-211.	2.0	32
40	Galectin-1 is required for the regulatory function of B cells. Scientific Reports, 2018, 8, 2725.	3.3	23
41	A Rapamycin-Based GMP-Compatible Process for the Isolation and Expansion of Regulatory T Cells for Clinical Trials. Molecular Therapy - Methods and Clinical Development, 2018, 8, 198-209.	4.1	96
42	Reduced TCR Signaling Contributes to Impaired Th17 Responses in Tolerant Kidney Transplant Recipients. Transplantation, 2018, 102, e10-e17.	1.0	10
43	"First-In-Human―Clinical Trial Employing Adoptive Transfer of Autologous Thymus-Derived Treg Cells (thyTreg) to Prevent Graft Rejection in Heart-Transplanted Children. Transplantation, 2018, 102, S205.	1.0	7
44	Human retinoic acid–regulated CD161+ regulatory T cells support wound repair in intestinal mucosa. Nature Immunology, 2018, 19, 1403-1414.	14.5	86
45	Optimizing regulatory T cells for therapeutic application in human organ transplantation. Current Opinion in Organ Transplantation, 2018, 23, 516-523.	1.6	6
46	Cell Therapy in Organ Transplantation: Our Experience on the Clinical Translation of Regulatory T Cells. Frontiers in Immunology, 2018, 9, 354.	4.8	55
47	Expanded Regulatory T Cells Induce Alternatively Activated Monocytes With a Reduced Capacity to Expand T Helper-17 Cells. Frontiers in Immunology, 2018, 9, 1625.	4.8	55
48	Immunomodulatory role of Keratin 76 in oral and gastric cancer. Nature Communications, 2018, 9, 3437.	12.8	32
49	Nox2 in regulatory T cells promotes angiotensin II–induced cardiovascular remodeling. Journal of Clinical Investigation, 2018, 128, 3088-3101.	8.2	46
50	Invariant natural killer T cells treated with rapamycin or transforming growth factor-β acquire a regulatory function and suppress T effector lymphocytes. Cellular and Molecular Immunology, 2017, 14, 392-394.	10.5	3
51	Regulatory T cells: tolerance induction in solid organ transplantation. Clinical and Experimental Immunology, 2017, 189, 197-210.	2.6	56
52	Increased Expression of Cytotoxic T-Lymphocyteâ^'Associated Protein 4 by T Cells, Induced by B7 in Sera, Reduces Adaptive Immunity in Patients With Acute Liver Failure. Gastroenterology, 2017, 153, 263-276.e8.	1.3	40
53	Treg therapy in transplantation: a general overview. Transplant International, 2017, 30, 745-753.	1.6	115
54	Expression of a Chimeric Antigen Receptor Specific for Donor HLA Class I Enhances the Potency of Human Regulatory T Cells in Preventing Human Skin Transplant Rejection. American Journal of Transplantation, 2017, 17, 931-943.	4.7	244

#	Article	IF	CITATIONS
55	Guidelines for the use of flow cytometry and cell sorting in immunological studies [*] . European Journal of Immunology, 2017, 47, 1584-1797.	2.9	505
56	An Atlas of Human Regulatory T Helper-like Cells Reveals Features of Th2-like Tregs that Support a Tumorigenic Environment. Cell Reports, 2017, 20, 757-770.	6.4	118
57	Labeling of cell therapies: How can we get it right?. Oncolmmunology, 2017, 6, e1345403.	4.6	10
58	Increased CD40 Ligation and Reduced BCR Signalling Leads to Higher IL-10 Production in B Cells From Tolerant Kidney Transplant Patients. Transplantation, 2017, 101, 541-547.	1.0	33
59	Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Science Translational Medicine, 2017, 9, .	12.4	512
60	Minimum Information about T Regulatory Cells: A Step toward Reproducibility and Standardization. Frontiers in Immunology, 2017, 8, 1844.	4.8	43
61	Cellular Therapy in Transplantation and Tolerance. , 2017, , 133-150.		0
62	Successful expansion of functional and stable regulatory T cells for immunotherapy in liver transplantation. Oncotarget, 2016, 7, 7563-7577.	1.8	126
63	Antigen-specificity using chimeric antigen receptors: the future of regulatory T-cell therapy?. Biochemical Society Transactions, 2016, 44, 342-348.	3.4	37
64	What Is Direct Allorecognition?. Current Transplantation Reports, 2016, 3, 275-283.	2.0	24
65	APT070 (mirococept), a membraneâ€localizing C3 convertase inhibitor, attenuates early human islet allograft damage <i>in vitro</i> and <i>in vivo</i> in a humanized mouse model. British Journal of Pharmacology, 2016, 173, 575-587.	5.4	19
66	Dual stimulation of antigen presenting cells using carbon nanotube-based vaccine delivery system for cancer immunotherapy. Biomaterials, 2016, 104, 310-322.	11.4	114
67	IL-10-produced by human transitional B-cells down-regulates CD86 expression on B-cells leading to inhibition of CD4+T-cell responses. Scientific Reports, 2016, 6, 20044.	3.3	68
68	Exploring a Role for IL-7–Induced Homeostatic Reconstitution of Regulatory T Cells Postbasiliximab Therapy. Transplantation, 2016, 100, 1797-1798.	1.0	0
69	Developing in vitro expanded CD45RA ⁺ regulatory T cells as an adoptive cell therapy for Crohn's disease. Gut, 2016, 65, 584-594.	12.1	163
70	Carbon nanotubes' surface chemistry determines their potency as vaccine nanocarriers in vitro and in vivo. Journal of Controlled Release, 2016, 225, 205-216.	9.9	52
71	Microbiota, immunity and the liver. Immunology Letters, 2016, 171, 36-49.	2.5	19
72	Impact of immunosuppressive drugs on the therapeutic efficacy of ex vivo expanded human regulatory T cells. Haematologica, 2016, 101, 91-100.	3.5	64

#	Article	IF	CITATIONS
73	Transitionalâ€2 B cells acquire regulatory function during tolerance induction and contribute to allograft survival. European Journal of Immunology, 2015, 45, 843-853.	2.9	39
74	Allospecific CD4 ⁺ T cells retain effector function and are actively regulated by Treg cells in the context of transplantation tolerance. European Journal of Immunology, 2015, 45, 2017-2027.	2.9	17
75	Regulatory T Cells: Serious Contenders in the Promise for Immunological Tolerance in Transplantation. Frontiers in Immunology, 2015, 6, 438.	4.8	108
76	Clinical Use of Tolerogenic Dendritic Cells-Harmonization Approach in European Collaborative Effort. Mediators of Inflammation, 2015, 2015, 1-8.	3.0	57
77	Micro <scp>RNA</scp> s affect dendritic cell function and phenotype. Immunology, 2015, 144, 197-205.	4.4	101
78	Hepatocyte Growth Factor Receptor c-Met Instructs T Cell Cardiotropism and Promotes T Cell Migration to the Heart via Autocrine Chemokine Release. Immunity, 2015, 42, 1087-1099.	14.3	85
79	An endogenous nanomineral chaperones luminal antigen and peptidoglycan to intestinal immune cells. Nature Nanotechnology, 2015, 10, 361-369.	31.5	73
80	Hurdles in therapy with regulatory T cells. Science Translational Medicine, 2015, 7, 304ps18.	12.4	136
81	Phenotypic Complexity of the Human Regulatory T Cell Compartment Revealed by Mass Cytometry. Journal of Immunology, 2015, 195, 2030-2037.	0.8	130
82	Enhancement of the immunoregulatory potency of mesenchymal stromal cells by treatment with immunosuppressive drugs. Cytotherapy, 2015, 17, 1188-1199.	0.7	27
83	Monitoring the efficacy of dendritic cell vaccination by early detection of ^{99m} <scp>T</scp> câ€ <scp>HMPAO</scp> ″abelled <scp>CD</scp> 4 ⁺ <scp>T</scp> Âcells. European Journal of Immunology, 2014, 44, 2188-2191.	2.9	9
84	Regulatory T-Cell Therapy in the Induction of Transplant Tolerance. Transplantation, 2014, 98, 370-379.	1.0	70
85	Regulatory T Cell-Derived Exosomes: Possible Therapeutic and Diagnostic Tools in Transplantation. Frontiers in Immunology, 2014, 5, 555.	4.8	77
86	Ex Vivo Expanded Human Regulatory T Cells Delay Islet Allograft Rejection via Inhibiting Islet-Derived Monocyte Chemoattractant Protein-1 Production in CD34+ Stem Cells-Reconstituted NOD-scid IL2rγnull Mice. PLoS ONE, 2014, 9, e90387.	2.5	50
87	<scp>CD</scp> 161 expression characterizes a subpopulation of human regulatory <scp>T</scp> cells that produces <scp>IL</scp> â€17 in a <scp>STAT</scp> 3â€dependent manner. European Journal of Immunology, 2013, 43, 2043-2054.	2.9	114
88	CD73 expression on extracellular vesicles derived from CD4 ⁺ CD25 ⁺ Foxp3 ⁺ T cells contributes to their regulatory function. European Journal of Immunology, 2013, 43, 2430-2440.	2.9	205
89	Promoting transplantation tolerance; adoptive regulatory T cell therapy. Clinical and Experimental Immunology, 2013, 172, 158-168.	2.6	56
90	Assessment of regulatory T-cell function in forthcoming clinical trials of cell therapy. Expert Review of Molecular Diagnostics, 2013, 13, 5-7.	3.1	4

#	Article	IF	CITATIONS
91	Comparison of Regulatory T Cells in Hemodialysis Patients and Healthy Controls. Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 1396-1405.	4.5	77
92	Tolerogenic Donor-Derived Dendritic Cells Risk Sensitization In Vivo owing to Processing and Presentation by Recipient APCs. Journal of Immunology, 2013, 190, 4848-4860.	0.8	32
93	A role for gut-associated lymphoid tissue in shaping the human B cell repertoire. Journal of Experimental Medicine, 2013, 210, 1665-1674.	8.5	80
94	<scp>D</scp> endritic cell modification as a route to inhibiting corneal graft rejection by the indirect pathway of allorecognition. European Journal of Immunology, 2013, 43, 734-746.	2.9	19
95	Regulatory <scp>T</scp> cells in renal cell carcinoma: additional fuel to the bonfire of debate. BJU International, 2013, 112, 538-539.	2.5	Ο
96	Differential effects of rapamycin and retinoic acid on expansion, stability and suppressive qualities of human CD4+CD25+FOXP3+ T regulatory cell subpopulations. Haematologica, 2013, 98, 1291-1299.	3.5	127
97	Thymic Versus Induced Regulatory T Cells – Who Regulates the Regulators?. Frontiers in Immunology, 2013, 4, 169.	4.8	74
98	Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation. Journal of Experimental Medicine, 2012, 209, 935-945.	8.5	212
99	Relevance of regulatory T cell promotion of donor-specific tolerance in solid organ transplantation. Frontiers in Immunology, 2012, 3, 184.	4.8	50
100	Alloantigenâ€specific regulatory <scp>T</scp> cells prevent experimental chronic graftâ€versusâ€host disease by simultaneous control of allo†and autoreactivity. European Journal of Immunology, 2012, 42, 3322-3333.	2.9	14
101	Functional modulation of human monocytes derived DCs by anaphylatoxins C3a and C5a. Immunobiology, 2012, 217, 65-73.	1.9	86
102	Absence of Galectinâ€1 accelerates CD8+ T cellâ€mediated graft rejection. European Journal of Immunology, 2012, 42, 2881-2888.	2.9	14
103	Helicobacter pyloriinducesin-vivoexpansion of human regulatory T cells through stimulating interleukin-11² production by dendritic cells. Clinical and Experimental Immunology, 2012, 170, 300-309.	2.6	23
104	Xenogeneic Graft-versus-Host-Disease in NOD-scid IL-2Rγnull Mice Display a T-Effector Memory Phenotype. PLoS ONE, 2012, 7, e44219.	2.5	154
105	A rapid diagnostic test for human regulatory T-cell function to enable regulatory T-cell therapy. Blood, 2012, 119, e57-e66.	1.4	74
106	Expression of complement components, receptors and regulators by human dendritic cells. Molecular Immunology, 2011, 48, 1121-1127.	2.2	87
107	Placenta-derived MSCs are partially immunogenic and less immunomodulatory than bone marrow-derived MSCs. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 684-694.	2.7	51
108	Human Regulatory T Cells with Alloantigen Specificity Are More Potent Inhibitors of Alloimmune Skin Graft Damage than Polyclonal Regulatory T Cells. Science Translational Medicine, 2011, 3, 83ra42.	12.4	313

#	Article	IF	CITATIONS
109	Dendritic Cells as a Tool to Induce Transplantation Tolerance: Obstacles and Opportunities. Transplantation, 2011, 91, 2-7.	1.0	69
110	Cell therapy to promote transplantation tolerance: a winning strategy?. Immunotherapy, 2011, 3, 28-31.	2.0	17
111	Monitoring of In Vivo Function of Superparamagnetic Iron Oxide Labelled Murine Dendritic Cells during Anti-Tumour Vaccination. PLoS ONE, 2011, 6, e19662.	2.5	42
112	In Vivo SPECT Reporter Gene Imaging of Regulatory T Cells. PLoS ONE, 2011, 6, e25857.	2.5	41
113	Adoptive regulatory T cell therapy: challenges in clinical transplantation. Current Opinion in Organ Transplantation, 2010, 15, 427-434.	1.6	36
114	Targeting MHC Class I Monomers to Dendritic Cells Inhibits the Indirect Pathway of Allorecognition and the Production of IgG Alloantibodies Leading to Long-Term Allograft Survival. Journal of Immunology, 2010, 184, 1757-1764.	0.8	29
115	<i>Helicobacter pylori</i> Stimulates Dendritic Cells To Induce Interleukin-17 Expression from CD4 ⁺ T Lymphocytes. Infection and Immunity, 2010, 78, 845-853.	2.2	81
116	T-cell alloimmunity and chronic allograft dysfunction. Kidney International, 2010, 78, S2-S12.	5.2	53
117	Anti-TNFα therapy—killing two birds with one stone?. Lancet, The, 2010, 375, 2278.	13.7	10
118	Superantigen-Activated Regulatory T Cells Inhibit the Migration of Innate Immune Cells and the Differentiation of Naive T Cells. Journal of Immunology, 2009, 183, 2946-2956.	0.8	7
119	ILâ€17â€producing CD4 ⁺ T cells, proâ€inflammatory cytokines and apoptosis are increased in low risk myelodysplastic syndrome. British Journal of Haematology, 2009, 145, 64-72.	2.5	169
120	Indefinite mouse heart allograft survival in recipient treated with CD4+CD25+ regulatory T cells with indirect allospecificity and short term immunosuppression. Transplant Immunology, 2009, 21, 203-209.	1.2	67
121	Regulation of Rat and Human T-Cell Immune Response by Pharmacologically Modified Dendritic Cells. Transplantation, 2009, 87, 1617-1628.	1.0	15
122	The T helper 17–regulatory T cell axis in transplant rejection and tolerance. Current Opinion in Organ Transplantation, 2009, 14, 326-331.	1.6	81
123	Imbalance of effector and regulatory CD4 T cells is associated with graft-versus-host disease after hematopoietic stem cell transplantation using a reduced intensity conditioning regimen and alemtuzumab. Haematologica, 2009, 94, 956-966.	3.5	32
124	Relative roles of Th1 and Th17 effector cells in allograft rejection. Current Opinion in Organ Transplantation, 2009, 14, 23-29.	1.6	59
125	Translational Mini-Review Series on Th17 Cells: Induction of interleukin-17 production by regulatory T cells. Clinical and Experimental Immunology, 2009, 159, 120-130.	2.6	124
126	The importance of the indirect pathway of allorecognition in clinical transplantation. Current Opinion in Immunology, 2008, 20, 568-574.	5.5	74

#	Article	IF	CITATIONS
127	Natural regulatory T cells: number and function are normal in the majority of patients with lupus nephritis. Clinical and Experimental Immunology, 2008, 153, 44-55.	2.6	60
128	The Relative Efficiency of Acquisition of MHC:Peptide Complexes and Cross-Presentation Depends on Dendritic Cell Type. Journal of Immunology, 2008, 181, 3212-3220.	0.8	51
129	Hemopoietic Cell Expression of the Chemokine Decoy Receptor D6 Is Dynamic and Regulated by GATA1. Journal of Immunology, 2008, 181, 3353-3363.	0.8	69
130	Pathways of major histocompatibility complex allorecognition. Current Opinion in Organ Transplantation, 2008, 13, 438-444.	1.6	125
131	Regulatory T cells as therapeutic cells. Current Opinion in Organ Transplantation, 2008, 13, 645-653.	1.6	62
132	Conferring indirect allospecificity on CD4+CD25+ Tregs by TCR gene transfer favors transplantation tolerance in mice. Journal of Clinical Investigation, 2008, 118, 3619-3628.	8.2	241
133	Increased Number of IL-17 Producing CD4+ T Cells in Low Risk Myelodysplastic Syndrome (MDS). Blood, 2008, 112, 637-637.	1.4	0
134	IFN-α2 Induces Leukocyte Integrin Redistribution, Increased Adhesion, and Migration. Journal of Interferon and Cytokine Research, 2007, 27, 291-304.	1.2	11
135	Chronic Exposure to Helicobacter pylori Impairs Dendritic Cell Function and Inhibits Th1 Development. Infection and Immunity, 2007, 75, 810-819.	2.2	85
136	The maintenance of human CD4+CD25+ regulatory T cell function: IL-2, IL-4, IL-7 and IL-15 preserve optimal suppressive potency in vitro. International Immunology, 2007, 19, 785-799.	4.0	89
137	Mesenchymal Stem Cells Inhibit Dendritic Cell Differentiation and Function by Preventing Entry Into the Cell Cycle. Transplantation, 2007, 83, 71-76.	1.0	404
138	Induction of tumor-specific T-cell responses by vaccination with tumor lysate-loaded dendritic cells in colorectal cancer patients with carcinoembryonic-antigen positive tumors. Cancer Immunology, Immunotherapy, 2007, 56, 2003-2016.	4.2	44
139	In vitro expanded alloantigen-specific CD4+CD25+ regulatory T cell treatment for the induction of donor-specific transplantation tolerance. International Immunopharmacology, 2006, 6, 1879-1882.	3.8	18
140	In-vitro generation and characterisation of murine CD4+CD25+ regulatory T cells with indirect allospecificity. International Immunopharmacology, 2006, 6, 1883-1888.	3.8	17
141	New trends in immunosuppression and immunotherapy. International Immunopharmacology, 2006, 6, 1874-1878.	3.8	4
142	Generation and Expansion of Human CD4+CD25+ Regulatory T Cells with Indirect Allospecificity: Potential Reagents to Promote Donor-Specific Transplantation Tolerance. Transplantation, 2006, 82, 1738-1743.	1.0	65
143	Location of Major Histocompatibility Complex Class II Molecules in Rafts on Dendritic Cells Enhances the Efficiency of T-Cell Activation and Proliferation. Scandinavian Journal of Immunology, 2006, 63, 7-16.	2.7	33
144	Helicobacter pylori has Stimulatory Effects on Naive T Cells. Helicobacter, 2006, 11, 21-30.	3.5	8

#	Article	IF	CITATIONS
145	Aspirin-Treated Human DCs Up-Regulate ILT-3 and Induce Hyporesponsiveness and Regulatory Activity in Responder T Cells. American Journal of Transplantation, 2006, 6, 2046-2059.	4.7	61
146	Modulation of dendritic cell phenotype and functionin an <i>in vitro </i> model of the intestinal epithelium. European Journal of Immunology, 2006, 36, 864-874.	2.9	71
147	Altered proximal T cell receptor (TCR) signaling in human CD4+CD25+ regulatory T cells. Journal of Leukocyte Biology, 2006, 80, 145-151.	3.3	42
148	CD4+CD25+regulatory T-cell therapy. Expert Review of Clinical Immunology, 2006, 2, 387-392.	3.0	5
149	Aspirin modified dendritic cells are potent inducers of allo-specific regulatory T-cells. International Immunopharmacology, 2006, 6, 1895-901.	3.8	13
150	Modulation of human dendritic-cell function following transduction with viral vectors: implications for gene therapy. Blood, 2005, 105, 3824-3832.	1.4	130
151	CD4+CD25+ T cells, transplant engraftment, and allospecific tolerance. Blood, 2005, 105, 1375-1376.	1.4	2
152	Qualitatively distinct patterns of cytokines are released by human dendritic cells in response to different pathogens. Immunology, 2005, 116, 245-254.	4.4	47
153	Interferon-alpha2a is sufficient for promoting dendritic cell immunogenicity. Clinical and Experimental Immunology, 2005, 142, 051028153933001.	2.6	13
154	Activated CD1d-restricted natural killer T cells secrete IL-2: innate help for CD4+CD25+ regulatory T cells?. European Journal of Immunology, 2005, 35, 1193-1200.	2.9	88
155	Distinct effects of CD86-mediated costimulation on restingversus activated human CD4+ T cells. European Journal of Immunology, 2005, 35, 2909-2919.	2.9	8
156	Immunolipoplexes: An Efficient, Nonviral Alternative for Transfection of Human Dendritic Cells with Potential for Clinical Vaccination. Molecular Therapy, 2005, 11, 790-800.	8.2	57
157	Inhibition of NF-κB and Oxidative Pathways in Human Dendritic Cells by Antioxidative Vitamins Generates Regulatory T Cells. Journal of Immunology, 2005, 174, 7633-7644.	0.8	199
158	Type I interferons and the innate immune response—more than just antiviral cytokines. Molecular Immunology, 2005, 42, 869-877.	2.2	99
159	Cognate MHC-TCR interaction leads to apoptosis of antigen-presenting cells. Journal of Leukocyte Biology, 2004, 75, 1036-1044.	3.3	15
160	IFN-α Subtypes Differentially Affect Human T Cell Motility. Journal of Immunology, 2004, 173, 1663-1670.	0.8	68
161	CD40 can costimulate human memory T cells and favors IL-10 secretion. European Journal of Immunology, 2003, 33, 1094-1104.	2.9	12
162	Dendritic cells from CML patients have altered actin organization, reduced antigen processing, and impaired migration. Blood, 2003, 101, 3560-3567.	1.4	93

#	Article	IF	CITATIONS
163	Anergic T cells exert antigen-independent inhibition of cell-cell interactions via chemokine metabolism. Blood, 2003, 102, 2173-2179.	1.4	36
164	Induction of allopeptide-specific human CD4+CD25+ regulatory T cells ex vivo. Blood, 2003, 102, 2180-2186.	1.4	173
165	Human Anergic CD4+ T Cells Can Act as Suppressor Cells by Affecting Autologous Dendritic Cell Conditioning and Survival. Journal of Immunology, 2002, 168, 1060-1068.	0.8	45
166	Immunomodulatory properties of pegylated interferons: the 40 kD pegylated IFN alfa 2a has greater Th1 stimulatory activity than the 12 kD pegylated IFN alfa 2b. Journal of Hepatology, 2002, 36, 124.	3.7	0
167	Antigen-specific T cell suppression by human CD4+CD25+ regulatory T cells. European Journal of Immunology, 2002, 32, 1621.	2.9	226
168	Beryllium binding to HLA-DP molecule carrying the marker of susceptibility to berylliosis glutamate β69. Human Immunology, 2001, 62, 686-693.	2.4	59
169	Human CD4+CD25+ cells: a naturally occurring population of regulatory T cells. Blood, 2001, 98, 2736-2744.	1.4	551
170	The contributions of T-cell anergy to peripheral T-cell tolerance. Immunology, 2001, 103, 262-269.	4.4	91
171	HLA-DP Allele-Specific T Cell Responses to Beryllium Account for DP-Associated Susceptibility to Chronic Beryllium Disease. Journal of Immunology, 2001, 166, 3549-3555.	0.8	102
172	Amino Acid Substitutions in the Putative MHC Class II "Dimer of Dimers―Interface Inhibit CD4+ T Cell Activation. Journal of Immunology, 2001, 166, 800-808.	0.8	24
173	PEPTIDE ANALOGUES AS A STRATEGY TO INDUCE TOLERANCE IN T CELLS WITH INDIRECT ALLOSPECIFICITY1. Transplantation, 2000, 70, 631-640.	1.0	16
174	Human T cells elicit IFN-α secretion from dendritic cells following cell to cell interactions. European Journal of Immunology, 2000, 30, 3228-3235.	2.9	26
175	Type 1 IFN Maintains the Survival of Anergic CD4+ T Cells. Journal of Immunology, 2000, 165, 3782-3789.	0.8	42
176	Anergic T Cells Inhibit the Antigen-Presenting Function of Dendritic Cells. Journal of Immunology, 2000, 165, 1175-1181.	0.8	154
177	Significant Frequencies of T Cells With Indirect Anti-Donor Specificity in Heart Graft Recipients With Chronic Rejection. Circulation, 2000, 101, 2405-2410.	1.6	130
178	Biased T-cell receptor usage is associated with allelic variation in the MHC class II peptide binding groove. Immunogenetics, 1999, 49, 532-540.	2.4	6
179	Inhibition of T cell apoptosis by IFN-β rapidly reverses nuclear translocation of protein kinase C-δ. European Journal of Immunology, 1999, 29, 2603-2612.	2.9	97
180	LACK OF T CELL PROLIFERATION WITHOUT INDUCTION OF NONRESPONSIVENESS AFTER ANTIGEN PRESENTATION BY ENDOTHELIAL CELLS1. Transplantation, 1999, 68, 280-287.	1.0	21

#	Article	IF	CITATIONS
181	Interferon-Î ³ -treated renal tubular epithelial cells induce allospecific tolerance. Kidney International, 1998, 53, 679-689.	5.2	61
182	ASSOCIATION BETWEEN INTERLEUKIN-4-PRODUCING T LYMPHOCYTE FREQUENCIES AND REDUCED RISK OF GRAFT-VERSUS-HOST DISEASE1. Transplantation, 1998, 65, 979-988.	1.0	24
183	ROLE OF DONOR AND RECIPIENT ANTIGEN-PRESENTING CELLS IN PRIMING AND MAINTAINING T CELLS WITH INDIRECT ALLOSPECIFICITY1. Transplantation, 1998, 66, 1238-1243.	1.0	38
184	Antigen presentation by interferon-Î ³ -treated thyroid follicular cells inhibits interleukin-2 (IL-2) and supports IL-4 production by B7-dependent human T cells. European Journal of Immunology, 1997, 27, 62-71.	2.9	68
185	Anergic T cells effect linked suppression. European Journal of Immunology, 1997, 27, 3191-3197.	2.9	77
186	The TAP complex influences allorecognition of class II MHC molecules. Human Immunology, 1996, 50, 70-77.	2.4	10
187	Detection of primary direct and indirect human anti-porcine T cell responses using a porcine dendritic cell population. European Journal of Immunology, 1996, 26, 1378-1387.	2.9	112
188	Differential susceptibility to monomeric HIV gp120-mediated apoptosis in antigen-activated CD4+ T cell populations. European Journal of Immunology, 1995, 25, 2907-2916.	2.9	31
189	Ligation of either CD2 or CD28 rescues CD4+ T cells from HIV-gp120-induced apoptosis. European Journal of Immunology, 1995, 25, 2917-2922.	2.9	34
190	Definition of sites on HLA-DR1 involved in the T cell response to staphylococcal enterotoxins E and C2. European Journal of Immunology, 1995, 25, 3437-3444.	2.9	11
191	Myoblasts fail to stimulate T cells but induce tolerance. International Immunology, 1994, 6, 847-853.	4.0	33
192	Failure of correlation between B7 expression and activation of interleukin-2-secreting T cells. European Journal of Immunology, 1994, 24, 523-530.	2.9	22
193	The invariant chain inhibits presentation of endogenous antigens by a human fibroblast cell line. European Journal of Immunology, 1994, 24, 1632-1639.	2.9	41
194	Transfected murine cells expressing HLA class II can be used to generate alloreactive human T cell clones. Journal of Immunological Methods, 1994, 169, 25-33.	1.4	3
195	Different regions of the N-terminal domains of HLA-DR1 influence recognition of individual peptide-DR1 complexes. Human Immunology, 1994, 40, 312-322.	2.4	9
196	HIV-1 gp120-dependent induction of apoptosis in antigen-specific human T cell clones is characterized by †tissue' transglutaminase expression and prevented by cyclosporin A. FEBS Letters, 1994, 339, 258-264.	2.8	41
197	Presentation and recognition of major and minor histocompatibility antigens. Transplant Immunology, 1994, 2, 103-107.	1.2	58
198	<i>Response</i> : T Cells and Suppression in Vitro. Science, 1994, 266, 464-465.	12.6	0

#	Article	IF	CITATIONS
199	Position 71 in the α helix of the DRβ domain is predicted to influence peptide binding and plays a central role in allorecognition. European Journal of Immunology, 1993, 23, 343-349.	2.9	37
200	Transfection of HLA-DR-expressing DAP.3 cells with a cDNA clone encoding the glycosyl phosphatidylinositol-linked form of lymphocyte function associated antigen-3: biochemical features and functional consequences. International Immunology, 1992, 4, 673-680.	4.0	8
201	Molecular mimicry by major histocompatibility complex molecules and peptides accounts for some alloresponses. Immunology Letters, 1992, 34, 63-69.	2.5	40
202	The relationship between MHC restricted and allospecific T cell recognition. Immunology Letters, 1991, 29, 41-50.	2.5	31
203	Structural aspects of allorecognition. Current Opinion in Immunology, 1991, 3, 715-721.	5.5	33
204	Limited regions of the ?2-domain ?-helix control anti-A2 allorecognition: an analysis using a panel of A2 mutants. Immunogenetics, 1991, 34, 149-56.	2.4	23
205	Generation and characterization of an HLA-DR?-specific monoclonal antibody using L-cell transfectants expressing human and mouse class II major histocompatibility dimers. Immunogenetics, 1991, 33, 12-7.	2.4	7
206	The specificity of alloreactive T cells is determined by MHC polymorphisms which contact the T cell receptor and which influence peptide binding. International Immunology, 1991, 3, 769-775.	4.0	32
207	Increased Autoreactive T Cell Frequency in Tuberculous Patients. International Archives of Allergy and Immunology, 1990, 91, 36-42.	2.1	9
208	The structural basis of alloreactivity. Immunologic Research, 1990, 9, 135-146.	2.9	19
209	Antigen presentation by keratinocytes induces tolerance in human T cells. European Journal of Immunology, 1990, 20, 1893-1897.	2.9	174
210	Functional evidence for the recognition of endogenous peptides by autoreactive T cell clones. International Immunology, 1989, 1, 624-630.	4.0	15
211	Limiting dilution analysis of T cell unresponsiveness to mycobacteria in advanced disseminated tuberculosis. Medical Microbiology and Immunology, 1989, 178, 235-244.	4.8	5
212	Epstein-Barr virus-transformed B cells process and present Mycobacterium tuberculosis particulate antigens to T-cell clones. Cellular Immunology, 1987, 107, 281-292.	3.0	27
213	Mechanism of action of an antigen nonspecific inhibitory factor produced by human T cells stimulated by MPPS and PPD. Cellular Immunology, 1986, 98, 434-443.	3.0	18
214	A purified polysaccharide isolated from Candida albicans induces antibody response in vitro by human peripheral blood lymphocytes and discriminates between sera from normal and Candida albicans-infected individuals. Clinical Immunology and Immunopathology, 1984, 33, 199-209.	2.0	6
215	Measurement of the cytotoxicity of human lymphocytes using HeLa cells as target. Journal of Immunological Methods, 1981, 40, 143-149.	1.4	1