
Maurice A Curtis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9334074/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identifying Neural Progenitor Cells in the Adult Human Brain. Methods in Molecular Biology, 2022, 2389, 125-154.	0.4	2
2	Advancing Our Understanding of : Research Using Postmortem Brain Tissue. Methods in Molecular Biology, 2022, 2389, 201-208.	0.4	0
3	Tumour infiltrating lymphocyte density differs by meningioma type and is associated with prognosis in atypical meningioma. Pathology, 2022, , .	0.3	2
4	Lamina-specific immunohistochemical signatures in the olfactory bulb of healthy, Alzheimer's and Parkinson's disease patients. Communications Biology, 2022, 5, 88.	2.0	16
5	Neutrophil-vascular interactions drive myeloperoxidase accumulation in the brain in Alzheimer's disease. Acta Neuropathologica Communications, 2022, 10, 38.	2.4	42
6	Characterisation of PDGF-BB:PDGFRÎ ² signalling pathways in human brain pericytes: evidence of disruption in Alzheimer's disease. Communications Biology, 2022, 5, 235.	2.0	20
7	Persistent cortical and white matter inflammation after therapeutic hypothermia for ischemia in near-term fetal sheep. Journal of Neuroinflammation, 2022, 19, .	3.1	8
8	Cardiac glycosides target barrier inflammation of the vasculature, meninges and choroid plexus. Communications Biology, 2021, 4, 260.	2.0	18
9	fISHing with immunohistochemistry for housekeeping gene changes in Alzheimer's disease using an automated quantitative analysis workflow. Journal of Neurochemistry, 2021, 157, 1270-1283.	2.1	5
10	An imaging mass spectrometry atlas of lipids in the human neurologically normal and Huntington's disease caudate nucleus. Journal of Neurochemistry, 2021, 157, 2158-2172.	2.1	18
11	The autocrine regulation of insulin-like growth factor-1 in human brain of Alzheimer's disease. Psychoneuroendocrinology, 2021, 127, 105191.	1.3	5
12	Isolation of adult mouse microglia using their inÂvitro adherent properties. STAR Protocols, 2021, 2, 100518.	0.5	4
13	Blood-spinal cord barrier leakage is independent of motor neuron pathology in ALS. Acta Neuropathologica Communications, 2021, 9, 144.	2.4	24
14	Single-cell image analysis reveals a protective role for microglia in glioblastoma. Neuro-Oncology Advances, 2021, 3, vdab031.	0.4	22
15	RNA Quality in Post-mortem Human Brain Tissue Is Affected by Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2021, 14, 780352.	1.4	8
16	Pyridine alkaloids with activity in the central nervous system. Bioorganic and Medicinal Chemistry, 2020, 28, 115820.	1.4	50
17	Huntingtin Aggregates in the Olfactory Bulb in Huntington's Disease. Frontiers in Aging Neuroscience, 2020, 12, 261.	1.7	16
18	Identification of a dysfunctional microglial population in human Alzheimer's disease cortex using novel single-cell histology image analysis. Acta Neuropathologica Communications, 2020, 8, 170.	2.4	47

#	Article	IF	CITATIONS
19	The unfolded protein response is activated in the olfactory system in Alzheimer's disease. Acta Neuropathologica Communications, 2020, 8, 109.	2.4	22
20	Quantitative immunohistochemical analysis of myeloid cell marker expression in human cortex captures microglia heterogeneity with anatomical context. Scientific Reports, 2020, 10, 11693.	1.6	33
21	The epidemiology of patients undergoing meningioma resection in Auckland, New Zealand, 2002 to 2011. Journal of Clinical Neuroscience, 2020, 80, 324-330.	0.8	4
22	Isolation and culture of functional adult human neurons from neurosurgical brain specimens. Brain Communications, 2020, 2, fcaa171.	1.5	13
23	ALS/FTD mutations in UBQLN2 impede autophagy by reducing autophagosome acidification through loss of function. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15230-15241.	3.3	53
24	α-synuclein inclusions are abundant in non-neuronal cells in the anterior olfactory nucleus of the Parkinson's disease olfactory bulb. Scientific Reports, 2020, 10, 6682.	1.6	42
25	TBK1 phosphorylates mutant Huntingtin and suppresses its aggregation and toxicity in Huntington's disease models. EMBO Journal, 2020, 39, e104671.	3.5	34
26	Why people donate their brain to science: a systematic review. Cell and Tissue Banking, 2019, 20, 447-466.	0.5	14
27	<i>Porphyromonas gingivalis</i> in Alzheimer's disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Science Advances, 2019, 5, eaau3333.	4.7	1,152
28	Plasma MicroRNAs Are Altered Early and Consistently in a Mouse Model of Tauopathy. Neuroscience, 2019, 411, 164-176.	1.1	4
29	Polysialic acid masks neural cell adhesion molecule antigenicity. Brain Research, 2019, 1710, 199-208.	1.1	4
30	Differential Fatty Acid-Binding Protein Expression in Persistent Radial Glia in the Human and Sheep Subventricular Zone. Developmental Neuroscience, 2018, 40, 145-161.	1.0	10
31	Human Adult Neurogenesis: Evidence and Remaining Questions. Cell Stem Cell, 2018, 23, 25-30.	5.2	601
32	Layer-specific lipid signatures in the human subventricular zone demonstrated by imaging mass spectrometry. Scientific Reports, 2018, 8, 2551.	1.6	18
33	Neurochemical Characterization of PSA-NCAM + Cells in the Human Brain and Phenotypic Quantification in Alzheimer's Disease Entorhinal Cortex. Neuroscience, 2018, 372, 289-303.	1.1	24
34	ANGI-03. PSA-NCAM IN GLIOBLASTOMA – A NEGATIVE PROGNOSTIC MARKER AND A THERAPEUTIC TARGET?. Neuro-Oncology, 2018, 20, vi28-vi29.	0.6	0
35	Subventricular zone lipidomic architecture loss in Huntington's disease. Journal of Neurochemistry, 2018, 146, 613-630.	2.1	34
36	Unique and shared inflammatory profiles of human brain endothelia and pericytes. Journal of Neuroinflammation, 2018, 15, 138.	3.1	83

#	Article	IF	CITATIONS
37	PU.1 regulates Alzheimer's disease-associated genes in primary human microglia. Molecular Neurodegeneration, 2018, 13, 44.	4.4	111
38	Diagnosing pre-clinical dementia: the NZ Genetic Frontotemporal Dementia Study (FTDGeNZ). New Zealand Medical Journal, 2018, 131, 88-91.	0.5	0
39	α-synuclein transfer through tunneling nanotubes occurs in SH-SY5Y cells and primary brain pericytes from Parkinson's disease patients. Scientific Reports, 2017, 7, 42984.	1.6	112
40	Evidence for widespread, severe brain copper deficiency in Alzheimer's dementia. Metallomics, 2017, 9, 1106-1119.	1.0	74
41	Insulin promotes cell migration by regulating PSA-NCAM. Experimental Cell Research, 2017, 355, 26-39.	1.2	5
42	A ventral glomerular deficit in Parkinson's disease revealed by whole olfactory bulb reconstruction. Brain, 2017, 140, 2722-2736.	3.7	53
43	Metal concentrations and distributions in the human olfactory bulb in Parkinson's disease. Scientific Reports, 2017, 7, 10454.	1.6	31
44	C9ORF72 and UBQLN2 mutations are causes of amyotrophic lateral sclerosis in New Zealand: a genetic and pathologic study using banked human brain tissue. Neurobiology of Aging, 2017, 49, 214.e1-214.e5.	1.5	18
45	Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels. Aging, 2016, 8, 1485-1512.	1.4	192
46	Transcriptome sequencing reveals aberrant alternative splicing in Huntington's disease. Human Molecular Genetics, 2016, 25, 3454-3466.	1.4	102
47	Cultured pericytes from human brain show phenotypic and functional differences associated with differential CD90 expression. Scientific Reports, 2016, 6, 26587.	1.6	38
48	Isolation of highly enriched primary human microglia for functional studies. Scientific Reports, 2016, 6, 19371.	1.6	67
49	Elevation of brain glucose and polyol-pathway intermediates with accompanying brain-copper deficiency in patients with Alzheimer's disease: metabolic basis for dementia. Scientific Reports, 2016, 6, 27524.	1.6	68
50	Hippocampal lipid differences in Alzheimer's disease: a human brain study using matrixâ€assisted laser desorption/ionizationâ€imaging mass spectrometry. Brain and Behavior, 2016, 6, e00517.	1.0	33
51	Epigenetic Regulation of Tissue-Type Plasminogen Activator in Human Brain Tissue and Brain-Derived Cells. Gene Regulation and Systems Biology, 2016, 10, GRSB.S30241.	2.3	2
52	TGF-beta1 regulates human brain pericyte inflammatory processes involved in neurovasculature function. Journal of Neuroinflammation, 2016, 13, 37.	3.1	136
53	Distribution of PSA-NCAM in normal, Alzheimer's and Parkinson's disease human brain. Neuroscience, 2016, 330, 359-375.	1.1	43
54	Metabolite mapping reveals severe widespread perturbation of multiple metabolic processes in Huntington's disease human brain. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1650-1662.	1.8	38

#	Article	IF	CITATIONS
55	Graded perturbations of metabolism in multiple regions of human brain in Alzheimer's disease: Snapshot of a pervasive metabolic disorder. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1084-1092.	1.8	118
56	Studying Human Brain Inflammation in Leptomeningeal and Choroid Plexus Explant Cultures. Neurochemical Research, 2016, 41, 579-588.	1.6	12
57	An anti-inflammatory role for C/EBPÎ [^] in human brain pericytes. Scientific Reports, 2015, 5, 12132.	1.6	45
58	P4-017: Arginine decarboxylase and agmatinase immunoreactivity in Alzheimer's superior frontal gyrus. , 2015, 11, P773-P773.		3
59	The RAGE receptor and its ligands are highly expressed in astrocytes in a gradeâ€dependant manner in the striatum and subependymal layer in Huntington's disease. Journal of Neurochemistry, 2015, 134, 927-942.	2.1	30
60	Identification of elevated urea as a severe, ubiquitous metabolic defect in the brain of patients with Huntington's disease. Biochemical and Biophysical Research Communications, 2015, 468, 161-166.	1.0	61
61	Assessing fibrinogen extravasation into Alzheimer's disease brain using high-content screening of brain tissue microarrays. Journal of Neuroscience Methods, 2015, 247, 41-49.	1.3	23
62	Increased acetyl and total histone levels in post-mortem Alzheimer's disease brain. Neurobiology of Disease, 2015, 74, 281-294.	2.1	112
63	Global changes in DNA methylation and hydroxymethylation in Alzheimer's disease human brain. Neurobiology of Aging, 2014, 35, 1334-1344.	1.5	300
64	Synemin is expressed in reactive astrocytes and Rosenthal fibers in Alexander disease. Apmis, 2014, 122, 76-80.	0.9	24
65	Altered arginine metabolism in Alzheimer's disease brains. Neurobiology of Aging, 2014, 35, 1992-2003.	1.5	148
66	Increased Precursor Cell Proliferation after Deep Brain Stimulation for Parkinson's Disease: A Human Study. PLoS ONE, 2014, 9, e88770.	1.1	47
67	P2-002: Altered arginine metabolism in the Alzheimer's hippocampus. , 2013, 9, P346-P346.		Ο
68	M-CSF increases proliferation and phagocytosis while modulating receptor and transcription factor expression in adult human microglia. Journal of Neuroinflammation, 2013, 10, 85.	3.1	85
69	Dynamic changes in myelin aberrations and oligodendrocyte generation in chronic amyloidosis in mice and men. Clia, 2013, 61, 273-286.	2.5	155
70	GABAA receptor characterization and subunit localization in the human sub ventricular zone. Journal of Chemical Neuroanatomy, 2013, 52, 58-68.	1.0	8
71	Selective expression of hyaluronan and receptor for hyaluronan mediated motility (Rhamm) in the adult mouse subventricular zone and rostral migratory stream and in ischemic cortex. Brain Research, 2013, 1503, 62-77.	1.1	39
72	Adult Human Glia, Pericytes and Meningeal Fibroblasts Respond Similarly to IFNy but Not to TGFβ1 or M-CSF. PLoS ONE, 2013, 8, e80463.	1.1	37

#	Article	IF	CITATIONS
73	Insulin and <scp>IGF</scp> 1 modulate turnover of polysialylated neural cell adhesion molecule (<scp>PSA</scp> – <scp>NCAM</scp>) in a process involving specific extracellular matrix components. Journal of Neurochemistry, 2013, 126, 758-770.	2.1	25
74	Identifying Neural Progenitor Cells in the Adult Human Brain. Methods in Molecular Biology, 2013, 1059, 195-225.	0.4	3
75	Adult Human Brain Neural Progenitor Cells (NPCs) and Fibroblast-Like Cells Have Similar Properties In Vitro but Only NPCs Differentiate into Neurons. PLoS ONE, 2012, 7, e37742.	1.1	43
76	Neurogenesis and progenitor cells in the adult human brain: A comparison between hippocampal and subventricular progenitor proliferation. Developmental Neurobiology, 2012, 72, 990-1005.	1.5	101
77	A method for generating high-yield enriched neuronal cultures from P19 embryonal carcinoma cells. Journal of Neuroscience Methods, 2012, 204, 87-103.	1.3	27
78	No change in progenitor cell proliferation in the hippocampus in Huntington's disease. Neuroscience, 2011, 199, 577-588.	1.1	30
79	Allelic imbalance of tissue-type plasminogen activator (t-PA) gene expression in human brain tissue. Thrombosis and Haemostasis, 2011, 105, 945-953.	1.8	8
80	Neurogenesis in humans. European Journal of Neuroscience, 2011, 33, 1170-1174.	1.2	69
81	Locating and labeling neural stem cells in the brain. Journal of Cellular Physiology, 2011, 226, 1-7.	2.0	52
82	Longterm quiescent cells in the aged human subventricular neurogenic system specifically express GFAP‥. Aging Cell, 2010, 9, 313-326.	3.0	126
83	The rostral migratory stream and olfactory system: smell, disease and slippery cells. Progress in Brain Research, 2009, 175, 33-42.	0.9	17
84	A method for rapid derivation and propagation of neural progenitors from human embryonic stem cells. Journal of Neuroscience Methods, 2009, 184, 275-284.	1.3	39
85	The cellular composition and morphological organization of the rostral migratory stream in the adult human brain. Journal of Chemical Neuroanatomy, 2009, 37, 196-205.	1.0	89
86	Defining Primary and Secondary Progenitor Disorders in the Brain: Proteomic Approaches for Analysis of Neural Progenitor Cells. Current Pharmaceutical Biotechnology, 2007, 8, 117-125.	0.9	1
87	Sox-2 is expressed by glial and progenitor cells and Pax-6 is expressed by neuroblasts in the human subventricular zone. Experimental Neurology, 2007, 204, 828-831.	2.0	33
88	Human Neuroblasts Migrate to the Olfactory Bulb via a Lateral Ventricular Extension. Science, 2007, 315, 1243-1249.	6.0	804
89	The effect of neurodegenerative diseases on the subventricular zone. Nature Reviews Neuroscience, 2007, 8, 712-723.	4.9	154
90	PROGENITOR CELLS AND ADULT NEUROGENESIS IN NEURODEGENERATIVE DISEASES AND INJURIES OF THE BASAL GANGLIA. Clinical and Experimental Pharmacology and Physiology, 2007, 34, 528-532.	0.9	73

#	Article	IF	CITATIONS
91	A novel population of progenitor cells expressing cannabinoid receptors in the subependymal layer of the adult normal and Huntington's disease human brain. Journal of Chemical Neuroanatomy, 2006, 31, 210-215.	1.0	36
92	Immunohistochemical staining of post-mortem adult human brain sections. Nature Protocols, 2006, 1, 2719-2732.	5.5	155
93	Neocortical neurogenesis in humans is restricted to development. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12564-12568.	3.3	399
94	A histochemical and immunohistochemical analysis of the subependymal layer in the normal and Huntington's disease brain. Journal of Chemical Neuroanatomy, 2005, 30, 55-66.	1.0	61
95	The distribution of progenitor cells in the subependymal layer of the lateral ventricle in the normal and Huntington's disease human brain. Neuroscience, 2005, 132, 777-788.	1.1	124
96	Activating transcription factor 2 expression in the adult human brain: Association with both neurodegeneration and neurogenesis. Neuroscience, 2005, 133, 437-451.	1.1	63
97	Neurogenesis in the Basal Ganglia in Huntington's Disease in the Human Brain and in an Animal Model. , 2005, , 425-433.		0
98	Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9023-9027.	3.3	494
99	Neurogenesis in the Diseased Adult Human Brain: New Therapeutic Strategies for Neurodegenerative Diseases. Cell Cycle, 2003, 2, 427-429.	1.3	23
100	Neurogenesis in the diseased adult human brainnew therapeutic strategies for neurodegenerative diseases. Cell Cycle, 2003, 2, 428-30.	1.3	6