Laura Jardine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9333978/publications.pdf

Version: 2024-02-01

430874 501196 5,332 29 18 28 citations h-index g-index papers 34 34 34 11312 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science, 2017, 356, .	12.6	1,846
2	IRF4 Transcription Factor-Dependent CD11b+ Dendritic Cells in Human and Mouse Control Mucosal IL-17 Cytokine Responses. Immunity, 2013, 38, 970-983.	14.3	703
3	Single-cell multi-omics analysis of the immune response in COVID-19. Nature Medicine, 2021, 27, 904-916.	30.7	452
4	Decoding human fetal liver haematopoiesis. Nature, 2019, 574, 365-371.	27.8	392
5	Single-Cell Transcriptomics of Regulatory T Cells Reveals Trajectories of Tissue Adaptation. Immunity, 2019, 50, 493-504.e7.	14.3	352
6	The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. Journal of Experimental Medicine, 2011, 208, 227-234.	8.5	277
7	Developmental cell programs are co-opted in inflammatory skin disease. Science, 2021, 371, .	12.6	264
8	Human Dermal CD14 + Cells Are a Transient Population of Monocyte-Derived Macrophages. Immunity, 2014, 41, 465-477.	14.3	256
9	Human skin dendritic cells in health and disease. Journal of Dermatological Science, 2015, 77, 85-92.	1.9	144
10	Mapping the developing human immune system across organs. Science, 2022, 376, eabo0510.	12.6	126
11	Prenatal development of human immunity. Science, 2020, 368, 600-603.	12.6	90
12	Blood and immune development in human fetal bone marrow and Down syndrome. Nature, 2021, 598, 327-331.	27.8	73
13	Biallelic interferon regulatory factor 8 mutation: AÂcomplex immunodeficiency syndrome with dendritic cell deficiency, monocytopenia, and immune dysregulation. Journal of Allergy and Clinical Immunology, 2018, 141, 2234-2248.	2.9	63
14	Lipopolysaccharide inhalation recruits monocytes and dendritic cell subsets to the alveolar airspace. Nature Communications, 2019, 10, 1999.	12.8	52
15	Donor monocyte–derived macrophages promote human acute graft-versus-host disease. Journal of Clinical Investigation, 2020, 130, 4574-4586.	8.2	35
16	Single-cell transcriptomics reveals a distinct developmental state of KMT2A-rearranged infant B-cell acute lymphoblastic leukemia. Nature Medicine, 2022, 28, 743-751.	30.7	35
17	Rapid Detection of Dendritic Cell and Monocyte Disorders Using CD4 as a Lineage Marker of the Human Peripheral Blood Antigen-Presenting Cell Compartment. Frontiers in Immunology, 2013, 4, 495.	4.8	27
18	Unique molecular and functional features of extramedullary hematopoietic stem and progenitor cell reservoirs in humans. Blood, 2022, 139, 3387-3401.	1.4	26

#	Article	IF	CITATIONS
19	Peripheral tissues reprogram CD8+ T cells for pathogenicity during graft-versus-host disease. JCI Insight, 2018, 3, .	5.0	23
20	Sensitizing primary acute lymphoblastic leukemia to natural killer cell recognition by induction of NKG2D ligands. Leukemia and Lymphoma, 2013, 54, 167-173.	1.3	19
21	Impact of Alemtuzumab Scheduling on Graft-versus-Host Disease after Unrelated Donor Fludarabine and Melphalan Allografts. Biology of Blood and Marrow Transplantation, 2017, 23, 805-812.	2.0	15
22	Isolation of Human Skin Dendritic Cell Subsets. Methods in Molecular Biology, 2016, 1423, 119-128.	0.9	10
23	Complexity of immune responses in COVID-19. Seminars in Immunology, 2021, 55, 101545.	5.6	10
24	A comparative study of reduced dose alemtuzumab in matched unrelated donor and related donor reduced intensity transplants. British Journal of Haematology, 2015, 168, 874-881.	2.5	6
25	Reconstructing human DC, monocyte and macrophage development in utero using single cell technologies. Molecular Immunology, 2020, 123, 1-6.	2.2	3
26	Loss of TÂcell tolerance in the skin following immunopathology is linked to failed restoration of the dermal niche by recruited macrophages. Cell Reports, 2022, 39, 110819.	6.4	3
27	Human lung macrophages: roll up for the MISTRG tour. Immunity, 2021, 54, 194-196.	14.3	2
28	Reduced Intensity Hematopoietic Stem Cell Transplant Rescues Immune Function and Corrects Pulmonary Alveolar Proteinosis in DCML Deficiency/GATA 2 Mutation. Blood, 2011, 118, 2045-2045.	1.4	1
29	Defining The Optimal Dose Of Alemtuzumab In Unrelated Donor Reduced Intensity Allografts: A UK Retrospective Study. Blood, 2013, 122, 4540-4540.	1.4	0