Juan Carlos Rendón-Angeles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9333806/publications.pdf

Version: 2024-02-01

48 papers 744 citations

567281 15 h-index 580821 25 g-index

49 all docs 49 docs citations

49 times ranked

778 citing authors

#	Article	IF	Citations
1	Limiting the development of Al4C3 to prevent degradation of Al/SiCp composites processed by pressureless infiltration. Composites Science and Technology, 2006, 66, 1056-1062.	7.8	82
2	Topotaxial replacement of chlorapatite by hydroxyapatite during hydrothermal ion exchange. American Mineralogist, 1999, 84, 1861-1869.	1.9	45
3	Preparation of calcium doped LaCrO3 fine powders by hydrothermal method and its sintering. Journal of the European Ceramic Society, 2006, 26, 81-88.	5.7	42
4	Effect of Metal Ions of Chlorapatites on the Topotaxial Replacement by Hydroxyapatite under Hydrothermal Conditions. Journal of Solid State Chemistry, 2000, 154, 569-578.	2.9	39
5	Microstructure and impact behavior of Al/SiCp composites fabricated by pressureless infiltration with different types of SiCp. Journal of Materials Processing Technology, 2007, 183, 368-373.	6.3	39
6	Preparation of foamed glasses from CRT TV glass by means of hydrothermal hot-pressing technique. Journal of the European Ceramic Society, 2008, 28, 739-745.	5.7	38
7	The Mechanism of corrosion of MgOCaZrO3–calcium silicate materials by cement clinker. Journal of the European Ceramic Society, 2007, 27, 79-89.	5.7	35
8	Mechanical alloying of Coî—,Cu powder mixtures. Scripta Metallurgica Et Materialia, 1993, 28, 645-650.	1.0	32
9	One-step synthesis of fine SrTiO3 particles using SrSO4 ore under alkaline hydrothermal conditions. Chemical Engineering Journal, 2009, 155, 483-492.	12.7	28
10	Conversion of Calcium Fluorapatiteinto Calcium Hydroxyapatite under Alkaline Hydrothermal Conditions. Journal of Solid State Chemistry, 2000, 151, 65-72.	2.9	27
11	Hydrothermal synthesis and sintering of lanthanum chromite powders doped with calcium. Solid State Ionics, 2004, 172, 389-392.	2.7	27
12	Study of the structure and optical properties of Cu and Mn in situ doped ZnS films by chemical bath deposition. Materials Science in Semiconductor Processing, 2018, 81, 68-74.	4.0	26
13	Kinetic study of the conversion of mineral celestite to strontianite under alkaline hydrothermal conditions. International Journal of Mineral Processing, 2007, 83, 12-18.	2.6	23
14	Chemical deposition of CdS films by an ammonia-free process with amino acids as complexing agents. Thin Solid Films, 2016, 599, 166-173.	1.8	17
15	Rapid synthesis and characterization of Zn substituted hydroxyapatite nanoparticles via a microwave-assisted hydrothermal method. Materials Letters, 2017, 195, 5-9.	2.6	17
16	Differences on the conversion of celestite in solutions bearing monovalent ions under hydrothermal conditions. Journal of Solid State Chemistry, 2006, 179, 3645-3652.	2.9	15
17	Development of a technique to prepare porous materials from glasses. Journal of the European Ceramic Society, 2006, 26, 761-765.	5.7	14
18	Hydrothermal Sintering under Mild Temperature Conditions: Preparation of Calcium-deficient Hydroxyapatite Compacts. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2010, 65, 1038-1044.	0.7	14

#	Article	IF	CITATIONS
19	Urea decomposition enhancing the hydrothermal synthesis of lithium iron phosphate powders: Effect of the lithium precursor. Advanced Powder Technology, 2017, 28, 1593-1602.	4.1	14
20	Growth of Barium Chlorapatite Crystals from a Sodium Chloride Flux. Bulletin of the Chemical Society of Japan, 1999, 72, 2097-2101.	3.2	13
21	Stability and direct conversion of mineral barite crystals in carbonated hydrothermal fluids. Journal of Materials Science, 2008, 43, 2189-2197.	3.7	12
22	Preparation of porous glass-ceramics under different hydrothermal hot pressing conditions. Solid State Ionics, 2004, 172, 597-600.	2.7	11
23	Synthesis of $(\hat{l}_{\pm}$ - and \hat{l}^2 -)Si3N4/Si2N2O into silicon particulate porous preforms by hybrid system CVI and direct nitridation. Journal of the European Ceramic Society, 2012, 32, 175-184.	5.7	11
24	Facile Synthesis of Perovskite-Structured Powders Using Barite–Celestite Ore under Hydrothermal Alkaline Conditions. Industrial & Engineering Chemistry Research, 2017, 56, 9942-9952.	3.7	11
25	Stability and single crystal growth of dielectric materials containing lead under hydrothermal conditions. Journal of the European Ceramic Society, 1999, 19, 1033-1036.	5.7	10
26	Exchange of SO42? ions with F? ions in mineral celestite under hydrothermal conditions. Solid State lonics, 2004, 172, 393-396.	2.7	10
27	Hydrothermal synthesis of perovskite strontium doped lanthanum chromite fine powders and its sintering. Journal of Alloys and Compounds, 2010, 504, 251-256.	5.5	10
28	Rapid hydrothermal synthesis of SrMo1â^'xWxO4 powders: Structure and luminescence characterization. Advanced Powder Technology, 2017, 28, 629-640.	4.1	10
29	Low temperature preparation of porous materials from TV panel glass compacted via hydrothermal hot pressing. Ceramics International, 2015, 41, 12700-12709.	4.8	8
30	Preparation of Silicon Hydroxyapatite Nanopowders under Microwave-Assisted Hydrothermal Method. Nanomaterials, 2021, 11, 1548.	4.1	8
31	Growth of Strontium Chlorapatite Crystals from a Sodium Chloride Flux. Bulletin of the Chemical Society of Japan, 2001, 74, 1635-1639.	3.2	7
32	Single-step synthesis of SrMoO4 particles from SrSO4 and their anti-corrosive activity. Journal of Alloys and Compounds, 2014, 607, 73-84.	5.5	7
33	Low-temperature densification of Mg-doped hydroxyapatite fine powders under hydrothermal hot processing conditions. Ceramics International, 2017, 43, 11907-11919.	4.8	7
34	Controllable synthesis of BaCuSi2O6 fine particles via a one-pot hydrothermal reaction with enhanced violet colour hue. Advanced Powder Technology, 2019, 30, 1473-1483.	4.1	7
35	Rapid synthesis of scheelite SrWO 4 particles using a natural SrSO 4 ore under alkaline hydrothermal conditions. Hydrometallurgy, 2015, 157, 116-126.	4.3	6
36	Effect of some organic binders on the mechanical strength of hydroxyapatite-based biocements. MRS Advances, 2018, 3, 3729-3734.	0.9	4

#	Article	IF	CITATIONS
37	High Temperature Chemical Interaction Between SSiC Substrates and Ag-Cu Based Liquid Alloys in Vacuo. Materials Science Forum, 2006, 509, 111-116.	0.3	3
38	Rotary-hydrothermal method assisting the conversion of celestine into scheelite SrWO4 in alkaline solutions. International Journal of Mineral Processing, 2016, 148, 105-115.	2.6	3
39	In Vitro Bioactivity of AISI 316L Stainless Steel Coated with Hydroxyapatite-Seeded 58S Bioglass. MRS Advances, 2019, 4, 3133-3142.	0.9	3
40	One-Pot Hydrothermal Synthesis of Victoria Green (Ca3Cr2Si3O12) Nanoparticles in Alkaline Fluids and Its Colour Hue Characterisation. Nanomaterials, 2021, 11, 521.	4.1	3
41	Synthesis of Perovskite Oxides by Hydrothermal Processing – From Thermodynamic Modelling to Practical Processing Approaches. , 0, , .		2
42	Rapid one-pot hydrothermal reaction for preparing BaCu2Si2O7 fine particles with controlled blue colour tonality. Ceramics International, 2021, 47, 9354-9365.	4.8	2
43	High Temperature Chemical Interaction Between SiO ₂ Substrates and Ag-Cu Based Liquid Alloys in Vacuo. Materials Science Forum, 2006, 509, 117-122.	0.3	1
44	Influencia de la temperatura en la compactación hidrotérmica en caliente de polvos de magnesio hidroxiapatita. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2018, 57, 45-54.	1.9	1
45	Austenite Grain Evolution in a Carbon Steel during Reheating. Materials Science Forum, 1992, 94-96, 703-708.	0.3	О
46	Topotaxial Hydrothermal Anion Exchange in the Apatite Structure. Phosphorus Research Bulletin, 2004, 17, 37-44.	0.6	0
47	Conversion of Used Glass Bottles to Porous Materials by Using Hydrothermal Technique. Materials Science Forum, 2007, 544-545, 537-540.	0.3	0
48	Mechanical Alloying of Cu-Al,Co,Fe,Zn Binary Powder Mixtures. , 1994, , 77-80.		0