List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9333332/publications.pdf Version: 2024-02-01

Πομανιάδ Ι ανεργ

#	Article	IF	CITATIONS
1	Performance Oriented DSP for Flexible Long Haul Coherent Transmission. Journal of Lightwave Technology, 2022, 40, 1256-1272.	4.6	10
2	Geometric Shaping of 2-D Constellations in the Presence of Laser Phase Noise. Journal of Lightwave Technology, 2021, 39, 481-490.	4.6	26
3	0.61 Pb/s S, C, and L-Band Transmission in a 125î¼ m Diameter 4-Core Fiber Using a Single Wideband Comb Source. Journal of Lightwave Technology, 2021, 39, 1027-1032.	4.6	22
4	Al-optimised tuneable sources for bandwidth-scalable, sub-nanosecond wavelength switching. Optics Express, 2021, 29, 11221.	3.4	13
5	Distributed abstraction and verification of an installed optical fibre network. Scientific Reports, 2021, 11, 10750.	3.3	3
6	2048-QAM transmission at 15 GBd over 100 km using geometric constellation shaping. Optics Express, 2021, 29, 18743.	3.4	15
7	The Partially-Coherent AWGN Channel: Transceiver Strategies for Low-Complexity Fibre Links. Journal of Lightwave Technology, 2021, 39, 5423-5431.	4.6	3
8	Coded Modulation for 100G Coherent EPON. Journal of Lightwave Technology, 2020, 38, 564-572.	4.6	6
9	74.38 Tb/s Transmission Over 6300 km Single Mode Fibre Enabled by C+L Amplification and Geometrically Shaped PDM-64QAM. Journal of Lightwave Technology, 2020, 38, 531-537.	4.6	25
10	Experimental Investigation of Deep Learning for Digital Signal Processing in Short Reach Optical Fiber Communications. , 2020, , .		11
11	Optical Fibre Capacity Optimisation via Continuous Bandwidth Amplification and Geometric Shaping. IEEE Photonics Technology Letters, 2020, 32, 1021-1024.	2.5	85
12	Time-Domain Learned Digital Back-Propagation. , 2020, , .		5
13	PULSE: Optical Circuit Switched Data Center Architecture Operating at Nanosecond Timescales. Journal of Lightwave Technology, 2020, 38, 4906-4921.	4.6	31
14	Extending Phase Noise Tolerance in UDWDM Access Networks. , 2020, , .		2
15	Packet Timescale Wavelength Switching Enabled by Regression Optimisation. IEEE Photonics Technology Letters, 2020, 32, 477-480.	2.5	7
16	Relative impact of channel symbol rate on transmission capacity. Journal of Optical Communications and Networking, 2020, 12, B1.	4.8	10
17	DSP Enabled Optical Detection Techniques for PON. Journal of Lightwave Technology, 2020, 38, 684-695.	4.6	18
18	Performance of momentum-based frequency-domain MIMO equalizer in the presence of feedback delay. Optics Express, 2020, 28, 19133.	3.4	6

#	Article	IF	CITATIONS
19	End-to-End Learning in Optical Fiber Communications: Experimental Demonstration and Future Trends. , 2020, , .		1
20	Concept and Experimental Demonstration of Optical IM/DD End-to-End System Optimization using a Generative Model. , 2020, , .		18
21	0.596 Pb/s S, C, L-Band Transmission in a 125µm Diameter 4-core Fiber Using a Single Wideband Comb Source. , 2020, , .		1
22	Optical Fiber Communication Systems Based on End-to-End Deep Learning : (Invited Paper). , 2020, , .		2
23	Study on the Impact of Nonlinearity and Noise on the Performance of High-Capacity Broadband Hybrid Raman-EDFA Amplified System. Journal of Lightwave Technology, 2019, 37, 5507-5515.	4.6	20
24	Performance of Kramers–Kronig Receivers in the Presence of Local Oscillator Relative Intensity Noise. Journal of Lightwave Technology, 2019, 37, 3035-3043.	4.6	6
25	Coherent Technologies for Passive Optical Networks. , 2019, , .		2
26	Improved Power Budget of 112 Gb/s/\$lambda\$ Intra-Datacentre Links Using a Split-Carrier Transmitter Architecture. IEEE Photonics Journal, 2019, 11, 1-15.	2.0	2
27	Experimental Demonstration of Dual-Polarization NFDM Transmission With \$b\$ -Modulation. IEEE Photonics Technology Letters, 2019, 31, 885-888.	2.5	38
28	Dual-Polarization Non-Linear Frequency-Division Multiplexed Transmission With <inline-formula> <tex-math notation="LaTeX">\$b\$</tex-math> </inline-formula> -Modulation. Journal of Lightwave Technology, 2019, 37, 1570-1578.	4.6	54
29	Opportunities for Optical Access Network Transceivers Beyond OOK [Invited]. Journal of Optical Communications and Networking, 2019, 11, A186.	4.8	23
30	Increasing achievable information rates with pilot-based DSP in standard intradyne detection. , 2019, , .		12
31	Self-Suppression of Signal-Signal Beating Interference using a Split-Carrier Transmitter. , 2019, , .		Ο
32	Inter-Channel Interference in Non-Linear Frequency-Division Multiplexed Networks on Fibre Links with Lumped Amplification. , 2019, , .		0
33	Deep Learning for Communication over Dispersive Nonlinear Channels: Performance and Comparison with Classical Digital Signal Processing. , 2019, , .		8
34	Experimental Demonstration of Dual-Polarisation NFDM Transmission with B-Modulation. , 2019, , .		2
35	Nonlinearity-Free Coherent Transmission in Hollow-Core Antiresonant Fiber. Journal of Lightwave Technology, 2019, 37, 909-916.	4.6	43
36	End-to-end optimized transmission over dispersive intensity-modulated channels using bidirectional recurrent neural networks. Optics Express, 2019, 27, 19650.	3.4	71

#	Article	IF	CITATIONS
37	A Comparison of Impairment Abstractions by Multiple Users of an Installed Fiber Infrastructure. , 2019, , .		3
38	74.38 Tb/s Transmission Over 6300 km Single Mode Fiber with Hybrid EDFA/Raman Amplifiers. , 2019, , .		20
39	Coherent ONU Designs for 50 Gb/s/λ PON. , 2019, , .		1
40	Irregular Polar Coding for Complexity-Constrained Lightwave Systems. Journal of Lightwave Technology, 2018, 36, 2248-2258.	4.6	25
41	The Impact of Transceiver Noise on Digital Nonlinearity Compensation. Journal of Lightwave Technology, 2018, 36, 695-702.	4.6	17
42	Impact of Perturbations on Nonlinear Frequency-Division Multiplexing. Journal of Lightwave Technology, 2018, 36, 485-494.	4.6	22
43	Experimental Realisation of Single-Carrier Alamouti-Coded QPSK Using Frequency-Diverse Dual-Polarisation RF Pilot Tones. , 2018, , .		Ο
44	Nonlinearity Mitigation in the Presence of Intercore-Crosstalk. , 2018, , .		4
45	Impact of Intercore Crosstalk on Achievable Information Rates. , 2018, , .		1
46	Bidirectional Symmetric 25G Coherent ONU Using a Single Laser, Single-Ended PIN and a 2-bit ADC. , 2018, , .		1
47	91 nm C+L Hybrid Distributed Raman–Erbium-Doped Fibre Amplifier for High Capacity Subsea Transmission. , 2018, , .		27
48	Rate-Adaptive Coded Modulation with Geometrically-shaped Constellations. , 2018, , .		4
49	A Low-Loss Split-Carrier Transmitter Architecture for Intra-Datacentre Communications. , 2018, , .		1
50	Experimental Demonstration of Geometrically-Shaped Constellations Tailored to the Nonlinear Fibre Channel. , 2018, , .		20
51	Spectral Broadening of Gaussian Process in Optical Fibre and Implication on the Spectral Efficiency. , 2018, , .		Ο
52	Geometrically-shaped 64-point Constellations via Achievable Information Rates. , 2018, , .		13
53	On the Impact of Fixed Point Hardware for Optical Fiber Nonlinearity Compensation Algorithms. Journal of Lightwave Technology, 2018, 36, 5016-5022.	4.6	8
54	End-to-End Deep Learning of Optical Fiber Communications. Journal of Lightwave Technology, 2018, 36, 4843-4855.	4.6	256

#	Article	IF	CITATIONS
55	Comparison of Low Complexity Coherent Receivers for UDWDM-PONs (\$lambda\$-to-the-User). Journal of Lightwave Technology, 2018, 36, 3453-3464.	4.6	52
56	Networks for Future Services in a Smart City: Lessons Learned from the Connected OFCity Challenge 2017. IEEE Communications Magazine, 2018, 56, 138-144.	6.1	46
57	Recent Progress and Outlook for Coherent PON. , 2018, , .		27
58	A Simple Nonlinearity-Tailored Probabilistic Shaping Distribution for Square QAM. , 2018, , .		32
59	The Trade-off Between Transceiver Capacity and Symbol Rate. , 2018, , .		12
60	Experimental characterization of nonlinear interference noise as a process of intersymbol interference. Optics Letters, 2018, 43, 1123.	3.3	18
61	Digital Nonlinearity Compensation Considering Signal Spectral Broadening Effects in Dispersion-managed Systems. , 2018, , .		2
62	Transmission Schemes for Future Access Networks. , 2018, , .		0
63	Impact of Transceiver Subsystems on High-Capacity Optical Transmission. , 2018, , .		2
64	Digital nonlinearity compensation in high-capacity optical communication systems considering signal spectral broadening effect. Scientific Reports, 2017, 7, 12986.	3.3	15
65	Bidirectional wavelength-division multiplexing transmission over installed fibre using a simplified optical coherent access transceiver. Nature Communications, 2017, 8, 1043.	12.8	26
66	Experimental Analysis of Nonlinear Impairments in Fibre Optic Transmission Systems up to 7.3 THz. Journal of Lightwave Technology, 2017, 35, 4809-4816.	4.6	17
67	Digital nonlinearity compensation in high-capacity optical fibre communication systems: Performance and optimisation. , 2017, , .		0
68	Irregular Polar Coding for Multi-Level Modulation in Complexity-Constrained Lightwave Systems. , 2017, , .		7
69	Nonlinearity Compensation and Information Rates in Fully-Loaded C-band Optical Fibre Transmission Systems. , 2017, , .		1
70	Digital Back-Propagation Performance in Wideband Optical Fibre Transmission Systems. , 2017, , .		0
71	Digital back-propagation for unrepeatered transmission. , 2017, , .		0
72	A Closed-Form Expression to Evaluate Nonlinear Interference in Raman-Amplified Links. Journal of Lightwave Technology, 2017, 35, 4316-4328.	4.6	15

#	Article	IF	CITATIONS
73	Digital backpropagation accounting for polarization-mode dispersion. Optics Express, 2017, 25, 1903.	3.4	27
74	Modulation format dependence of digital nonlinearity compensation performance in optical fibre communication systems. Optics Express, 2017, 25, 3311.	3.4	44
75	On the bandwidth dependent performance of split transmitter-receiver optical fiber nonlinearity compensation. Optics Express, 2017, 25, 4554.	3.4	13
76	On the limits of digital back-propagation in the presence of transceiver noise. Optics Express, 2017, 25, 4564.	3.4	49
77	Span length and information rate optimisation in optical transmission systems using single-channel digital backpropagation. Optics Express, 2017, 25, 25353.	3.4	6
78	Modeling of nonlinearity-compensated optical communication systems considering second-order signal-noise interactions. Optics Letters, 2017, 42, 3351.	3.3	11
79	A Simplified Dual-Carrier DP-64QAM 1 Tb/s Transceiver. , 2017, , .		6
80	Nonlinear Frequency-Division Multiplexing in the Focusing Regime. , 2017, , .		9
81	Achievable Information Rates of Square MQAM Modulation Formats after Carrier Phase Estimation. , 2017, , .		0
82	Experimental Investigation of Nonlinear Signal Distortions in Ultra-Wideband Transmission Systems. , 2017, , .		12
83	Modified Digital Backpropagation Accounting for Polarization-Mode Dispersion. , 2017, , .		1
84	Record High Capacity (6.8 Tbit/s) WDM Coherent Transmission in Hollow-Core Antiresonant Fiber. , 2017, , .		3
85	Increasing the information rates of optical communications via coded modulation: a study of transceiver performance. Scientific Reports, 2016, 6, 21278.	3.3	51
86	The benefit of split nonlinearity compensation for single channel optical fiber communications. , 2016, , .		2
87	The Benefit of Split Nonlinearity Compensation for Single-Channel Optical Fiber Communications. IEEE Photonics Technology Letters, 2016, 28, 1803-1806.	2.5	31
88	Amplification Schemes and Multi-Channel DBP for Unrepeatered Transmission. Journal of Lightwave Technology, 2016, 34, 2221-2227.	4.6	24
89	Design of a 1 Tb/s Superchannel Coherent Receiver. Journal of Lightwave Technology, 2016, 34, 1453-1463.	4.6	70
90	Sensitivity Gains by Mismatched Probabilistic Shaping for Optical Communication Systems. IEEE Photonics Technology Letters, 2016, 28, 786-789.	2.5	74

#	Article	IF	CITATIONS
91	Corrections to "Replacing the Soft-Decision FEC Limit Paradigm in the Design of Optical Communication Systems―[no. 20, Oct 15 4338-4352]. Journal of Lightwave Technology, 2016, 34, 722-722.	4.6	6
92	Polarization-Insensitive Single-Balanced Photodiode Coherent Receiver for Long-Reach WDM-PONs. Journal of Lightwave Technology, 2016, 34, 2034-2041.	4.6	45
93	Maximizing the optical network capacity. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20140440.	3.4	79
94	4 Tb/s Transmission Reach Enhancement Using 10 × 400 Gb/s Super-Channels and Polarization Insensitive Dual Band Optical Phase Conjugation. Journal of Lightwave Technology, 2016, 34, 1717-1723.	4.6	89
95	Replacing the Soft-Decision FEC Limit Paradigm in the Design of Optical Communication Systems. Journal of Lightwave Technology, 2016, 34, 707-721.	4.6	92
96	Algorithms and Reach Enhancement for Ultra High Bandwidth Transceivers. , 2016, , .		0
97	Experimental Evaluation of Phase Noise Tolerance for Polarization-Insensitive Coherent Receiver. , 2016, , .		0
98	A Low Complexity Hybrid Time-Frequency Domain Adaptive Equalizer for Coherent Optical Receivers. , 2016, , .		6
99	Modified radius directed equaliser for high order QAM. , 2015, , .		12
100	Equalization enhanced phase noise in Nyquist-spaced superchannel transmission systems using multi-channel digital back-propagation. Scientific Reports, 2015, 5, 13990.	3.3	34
101	Transceiver-Limited High Spectral Efficiency Nyquist-WDM Systems. , 2015, , .		9
102	Reach Enhancement of 100% for a DP-64QAM Super-Channel using MC-DBP. , 2015, , .		17
103	Optical and Digital Phase Conjugation Techniques for Fiber Nonlinearity Compensation. , 2015, , .		13
104	Polarization-insensitive single balanced photodiode coherent receiver for passive optical networks. , 2015, , .		6
105	The impact of phase conjugation on the nonlinear-Shannon limit: The difference between optical and electrical phase conjugation. , 2015, , .		11
106	Modulation order and code rate optimisation for digital coherent transceivers using generalised mutual information. , 2015, , .		12
107	Enhanced superchannel transmission using phase conjugation. , 2015, , .		10
108	Reduced Complexity Equalization for Coherent Long-Reach Passive Optical Networks [Invited]. Journal of Optical Communications and Networking, 2015, 7, A16.	4.8	32

#	Article	IF	CITATIONS
109	Frequency Diversity MIMO Detection for DP- QAM Transmission. Journal of Lightwave Technology, 2015, 33, 1388-1394.	4.6	15
110	Low Complexity Multichannel Nonlinear Predistortion for Passive Optical Networks. , 2015, , .		4
111	Unrepeatered Nyquist PDM-16QAM transmission over 364  km using Raman amplification and multi-channel digital back-propagation. Optics Letters, 2015, 40, 3025.	3.3	72
112	Replacing the Soft-Decision FEC Limit Paradigm in the Design of Optical Communication Systems. Journal of Lightwave Technology, 2015, 33, 4338-4352.	4.6	312
113	LDPC Codes for Optical Channels: Is the "FEC Limit―a Good Predictor of Post-FEC BER?. , 2015, , .		16
114	Multi-Channel DBP for Reach Enhancement of High Capacity M-QAM Super-Channels. , 2015, , .		2
115	Experimental Demonstration of 24-Dimensional Extended Golay Coded Modulation with LDPC. , 2014, , .		18
116	Fast Wavelength Switching DP-OFDM Transceiver in a 5-Node 800km Coherent OBS Network. , 2014, , .		0
117	Fast Wavelength Switching 6 GBd Dual Polarization 16QAM Digital Coherent Burst Mode Receiver. IEEE Photonics Technology Letters, 2014, 26, 297-300.	2.5	8
118	Unrepeated transmission over 253.4 km ultra low loss fiber achieving 6.95 b/s/Hz SE using EDFA-only pre-amplification. , 2014, , .		0
119	Reducing the Power Consumption of the CMA Equalizer Update for a Digital Coherent Receiver. , 2014, , \cdot		9
120	Digital Coherent Technology for Long-Reach Optical Access. , 2014, , .		7
121	Frequency diversity MIMO detection for dual-carrier DP-16QAM transmission. , 2014, , .		7
122	Real time 100 Gbit/s electrical Nyquist WDM transmitter. , 2014, , .		0
123	80-km Coherent DWDM-PON on 20-GHz Grid With Injected Gain Switched Comb Source. IEEE Photonics Technology Letters, 2014, 26, 364-367.	2.5	12
124	Digital Coherent Receivers for Long-Reach Optical Access Networks. Journal of Lightwave Technology, 2013, 31, 609-620.	4.6	106
125	Digital Coherence Enhancement Enabling 6-GBd DP-64QAM Using a 1.4-MHz Linewidth Laser. IEEE Photonics Technology Letters, 2013, 25, 2213-2216.	2.5	8
126	Blind Equalization of Receiver In-Phase/Quadrature Skew in the Presence of Nyquist Filtering. IEEE Photonics Technology Letters, 2013, 25, 2446-2449.	2.5	73

#	Article	IF	CITATIONS
127	Fixed Point and Power Consumption Analysis of a Coherent Receiver for Optical Access Networks Implemented in FPGA. , 2013, , .		2
128	Gain-switched multicarrier transmitter in a long-reach UDWDM PON with a digital coherent receiver. Optics Letters, 2013, 38, 4797.	3.3	11
129	Spectral Shaping for Mitigating Backreflections in a Bidirectional 10 Gbit/s Coherent WDM-PON. , 2013, , .		11
130	A Baud-Rate Sampled Coherent Transceiver with Digital Pulse Shaping and Interpolation. , 2013, , .		7
131	Long-Haul Transmission of PS-QPSK at 100 Gb/s Using Digital Backpropagation. IEEE Photonics Technology Letters, 2012, 24, 176-178.	2.5	13
132	Long-haul WDM transmission of PDM-8PSK and PDM-8QAM with nonlinear DSP. , 2012, , .		2
133	On the Impact of Backreflections in a Bidirectional 10 Gbit/s Coherent WDM-PON. , 2012, , .		4
134	Realizing High Sensitivity at 40 Gbit/s and 100 Gbit/s. , 2012, , .		9
135	Demonstration of 10 Gbit/s Colorless Coherent PON Incorporating Tunable DS-DBR Lasers and Low-Complexity Parallel DSP. , 2012, , .		Ο
136	Demonstration of 10 Gbit/s Colorless Coherent PON Incorporating Tunable DS-DBR Lasers and Low-Complexity Parallel DSP. , 2012, , .		5
137	Generation and long-haul transmission of polarization-switched QPSK at 429 Gb/s. Optics Express, 2011, 19, 9296.	3.4	38
138	Ultra-long-haul transmission of 7×429 Gbit/s PS-QPSK and PDM-BPSK. Optics Express, 2011, 19, B581.	3.4	3
139	A comparison of modulation formats for passive optical networks. Optics Express, 2011, 19, B836.	3.4	12
140	Ultra-long-haul transmission of 7 $ ilde{A}$ —42.9Gbit/s PS-QPSK and PM-BPSK. , 2011, , .		1
141	Bidirectional 10 Gbit/s long-reach WDM-PON using digital coherent receivers. , 2011, , .		17
142	Characterization of long-haul 112Gbit/s PDM-QAM-16 transmission with and without digital nonlinearity compensation. Optics Express, 2010, 18, 12939.	3.4	33
143	A long-reach ultra-dense 10 Gbit/s WDM-PON using a digital coherent receiver. Optics Express, 2010, 18, 25855.	3.4	61