Erzsebet Mernyak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9333197/publications.pdf

Version: 2024-02-01

471509 610901 64 807 17 24 citations h-index g-index papers 67 67 67 710 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis and investigation of the anticancer effects of estrone-16-oxime ethers in vitro. Steroids, 2013, 78, 69-78.	1.8	53
2	Neighboring group participation. Steroids, 2004, 69, 451-460.	1.8	40
3	Synthesis of Artemisinin–Estrogen Hybrids Highly Active against HCMV, <i>P. falciparum</i> , and Cervical and Breast Cancer. ACS Medicinal Chemistry Letters, 2018, 9, 1128-1133.	2.8	40
4	Synthesis and receptor-binding examinations of the normal and 13-epi-D-homoestrones and their 3-methyl ethers. Steroids, 2003, 68, 277-288.	1.8	30
5	Stereoselective synthesis of some $17\hat{l}^2$ -dihydrooxazinyl steroids, as novel presumed inhibitors of $17\hat{l}_{\pm}$ -hydroxylase-C17,20-lyase. Steroids, 2006, 71, 809-816.	1.8	29
6	Synthesis of trans-16-triazolyl-13α-methyl-17-estradiol diastereomers and the effects of structural modifications on their in vitro antiproliferative activities. Journal of Steroid Biochemistry and Molecular Biology, 2015, 150, 123-134.	2.5	29
7	Stereoselective synthesis of spiro and condensed pyrazolines of steroidal \hat{l}_{\pm} , \hat{l}_{\pm} -unsaturated ketones and nitrilimines by 1,3-dipolar cycloaddition. Steroids, 2009, 74, 520-525.	1.8	27
8	Synthesis and in Vitro Antiproliferative Evaluation of C-13 Epimers of Triazolyl-d-Secoestrone Alcohols: The First Potent 13α-d-Secoestrone Derivative. Molecules, 2016, 21, 611.	3.8	26
9	Antiproliferative effect of normal and 13-epi-d-homoestrone and their 3-methyl ethers on human reproductive cancer cell lines. Journal of Steroid Biochemistry and Molecular Biology, 2012, 132, 168-175.	2.5	25
10	Synthesis and biological evaluation of $13\hat{l}_{\pm}$ -estrone derivatives as potential antiproliferative agents. Steroids, 2016, 113, 14-21.	1.8	24
11	Synthesis of novel halogen-containing d-homoestrone and 13î±-d-homoestrone derivatives by Lewis acid-induced intramolecular Prins reaction. Tetrahedron, 2002, 58, 6851-6861.	1.9	23
12	Synthesis and structure–activity relationships of 2- and/or 4-halogenated 13 <i>\i^2</i> - and 13α-estrone derivatives as enzyme inhibitors of estrogen biosynthesis. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 1271-1282.	5.2	23
13	Analysis of nonderivatized steroids by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using C70 fullerene as matrix. Analytical and Bioanalytical Chemistry, 2009, 395, 869-874.	3.7	19
14	Synthesis and in vitro antiproliferative evaluation of d-secooxime derivatives of $13\hat{l}^2$ - and $13\hat{l}^2$ -estrone. Steroids, 2014, 89, 47-55.	1.8	18
15	Synthesis of methoxycarbonylpyrazolylandrostene derivatives, and their potential inhibitory effect on androgen biosynthesis and cell proliferation. Steroids, 2015, 98, 143-152.	1.8	17
16	Synthesis and <i>in vitro </i> pharmacological evaluation of <i>N </i> [(1-benzyl-1,2,3-triazol-4-yl)methyl]-carboxamides on <scp>d </scp> -secoestrone scaffolds. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 574-579.	5.2	17
17	Mechanism of antiproliferative action of a new d-secoestrone-triazole derivative in cervical cancer cells and its effect on cancer cell motility. Journal of Steroid Biochemistry and Molecular Biology, 2017, 165, 247-257.	2.5	17
18	Synthesis of novel $13\hat{1}$ -estrone derivatives by Sonogashira coupling as potential $17\hat{1}^2$ -HSD1 inhibitors. Beilstein Journal of Organic Chemistry, 2017, 13, 1303-1309.	2.2	17

#	Article	IF	CITATIONS
19	Efficient heterogeneous racemization of secondary alcohols: Convenient synthesis of 17α-estradiol 3-methyl ether. Catalysis Communications, 2005, 6, 520-524.	3.3	16
20	Syntheses and antiproliferative effects of d-homo- and d-secoestrones. Steroids, 2014, 87, 128-136.	1.8	16
21	Synthesis of A-ring halogenated 13α-estrone derivatives as potential 17β-HSD1 inhibitors. Steroids, 2015, 104, 230-236.	1.8	16
22	Synthesis and Biological Evaluation of Triazolyl 13α-Estrone–Nucleoside Bioconjugates. Molecules, 2016, 21, 1212.	3.8	14
23	Pd-Catalyzed microwave-assisted synthesis of phosphonated 13α-estrones as potential OATP2B1, 17β-HSD1 and/or STS inhibitors. Beilstein Journal of Organic Chemistry, 2018, 14, 2838-2845.	2.2	13
24	Addition reactions at the 16(17) double bond of 3-methoxy-13\$alpha;-estra-1,3,5(10),16-tetraene*1. Steroids, 2003, 68, 289-295.	1.8	12
25	Steroidal & Steroi	0.5	12
26	A molecular understanding of <scp>d</scp> â€homoestroneâ€induced G2/M cell cycle arrest in HeLa human cervical carcinoma cells. Journal of Cellular and Molecular Medicine, 2015, 19, 2365-2374.	3.6	12
27	Synthesis of antiproliferative 13α-d-homoestrones via Lewis acid-promoted one-pot Prins–Ritter reactions of d-secosteroidal δ-alkenyl-aldehydes. Steroids, 2015, 102, 76-84.	1.8	12
28	Comparative investigation of the <i>in vitro </i> inhibitory potencies of 13-epimeric estrones and D-secoestrones towards $17 < b^2 -hydroxysteroid dehydrogenase type 1. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 61-69.$	5.2	12
29	Synthesis and stereochemical investigations of novel nitrogen-containing 13α-estrone derivatives. Steroids, 2006, 71, 558-564.	1.8	9
30	Stereoselective synthesis of the four 16-hydroxymethyl-3-methoxy- and 16-hydroxymethyl-3-benzyloxy-13 \hat{l}_{\pm} -estra-1,3,5(10)-trien-17-ol isomers and their antiproliferative activities. Steroids, 2018, 134, 67-77.	1.8	9
31	Synthesis of Some Steroidal Oxazolines. Collection of Czechoslovak Chemical Communications, 2001, 66, 1831-1840.	1.0	8
32	Stereoselective halogenation of the 16-hydroxymethyl-3-methoxy- $13\hat{l}_{\pm}$ -estra-1,3,5(10)-trien-17-ols and their solvolytic investigation. Steroids, 2003, 68, 451-458.	1.8	8
33	Synthesis and in vitro investigation of potential antiproliferative monosaccharide–d-secoestrone bioconjugates. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1938-1942.	2.2	8
34	Antiproliferative Properties of Newly Synthesized 19-Nortestosterone Analogs Without Substantial Androgenic Activity. Frontiers in Pharmacology, 2018, 9, 825.	3.5	8
35	The first Pd-catalyzed Buchwald–Hartwig aminations at C-2 or C-4 in the estrone series. Beilstein Journal of Organic Chemistry, 2018, 14, 998-1003.	2.2	8
36	Pd-catalyzed Suzuki–Miyaura couplings and evaluation of 13α-estrone derivatives as potential anticancer agents. Steroids, 2020, 164, 108731.	1.8	8

#	Article	IF	CITATIONS
37	Synthesis and evaluation of anticancer activities of 2- or 4-substituted 3-(<i>N</i> -benzyltriazolylmethyl)-13α-oestrone derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 58-67.	5.2	8
38	Electrophile-induced generation of cyclic azomethine imines from steroidal \hat{l} -alkenyl hydrazones. Steroids, 2009, 74, 474-482.	1.8	7
39	Stereocontrolled synthesis of the four 16-hydroxymethyl-19-nortestosterone isomers and their antiproliferative activities. Steroids, 2016, 105, 113-120.	1.8	7
40	Antiproliferative and antimetastatic properties of 3-benzyloxy-16-hydroxymethylene-estradiol analogs against breast cancer cell lines. European Journal of Pharmaceutical Sciences, 2018, 123, 362-370.	4.0	7
41	Synthesis, Biological Evaluation and Docking Studies of 13-Epimeric 10-fluoro- and 10-Chloroestra-1,4-dien-3-ones as Potential Aromatase Inhibitors. Molecules, 2019, 24, 1783.	3 . 8	7
42	Structural dissection of 13-epiestrones based on the interaction with human Organic anion-transporting polypeptide, OATP2B1. Journal of Steroid Biochemistry and Molecular Biology, 2020, 200, 105652.	2.5	7
43	Data-Driven Ensemble Docking to Map Molecular Interactions of Steroid Analogs with Hepatic Organic Anion Transporting Polypeptides. Journal of Chemical Information and Modeling, 2021, 61, 3109-3127.	5. 4	7
44	Electrophile- and Lewis acid-induced nitrone formation and 1,3-dpolar cycloaddition reactions in the $13\hat{1}$ -estrone series. Arkivoc, 2011, 2010, 101-113.	0.5	7
45	Stereoselective Synthesis of the Two trans-(16-Hydroxymethyl)-3-methoxy-13α-estra-1,3,5(10)-trien-17-ol Isomers. Collection of Czechoslovak Chemical Communications, 2003, 68, 1141-1148.	1.0	6
46	Neighboring group participation. Steroids, 2006, 71, 141-153.	1.8	6
47	Synthesis of novel 17-(5â \in 2-iodo)triazolyl-3-methoxyestrane epimers via Cu(I)-catalyzed azideâ \in "alkyne cycloadditon, and an evaluation of their cytotoxic activity in vitro. Steroids, 2015, 98, 153-165.	1.8	6
48	Stereocontrolled synthesis of the four possible 3-methoxy and 3-benzyloxy-16-triazolyl-methyl-estra-17-ol hybrids and their antiproliferative activities. Steroids, 2019, 152, 108500.	1.8	6
49	Design, synthesis and biological evaluation of novel estrone phosphonates as high affinity organic anion-transporting polypeptide 2B1 (OATP2B1) inhibitors. Bioorganic Chemistry, 2021, 112, 104914.	4.1	6
50	Cycloaddition of steroidal cyclic nitrones to CN dipolarophiles: Stereoselective synthesis and antiproliferative effects of oxadiazolidinones in the estrone series. Steroids, 2013, 78, 1021-1028.	1.8	5
51	Synthesis of Novel C-2- or C-15-Labeled BODIPY—Estrone Conjugates. Molecules, 2018, 23, 821.	3.8	5
52	Synthesis and In Vitro Antitumor Effect of New Vindoline-steroid Hybrids. Current Organic Chemistry, 2019, 23, 959-967.	1.6	5
53	Selective hydrogenations of steroids catalyzed by heterogenized Ru complexes. Reaction Kinetics and Catalysis Letters, 2006, 87, 297-304.	0.6	4
54	Synthesis of novel 17-triazolyl-androst-5-en-3-ol epimers via $Cu(I)$ -catalyzed azide-alkyne cycloaddition and their inhibitory effect on $17\hat{I}$ ±-hydroxylase/C 17,20 -lyase. Steroids, 2018, 135, 79-91.	1.8	4

#	Article	IF	CITATIONS
55	Stereoselective synthesis of new type of estradiol hybrid molecules and their antiproliferative activities. Steroids, 2019, 148, 63-72.	1.8	4
56	Site-Selective Synthesis of 3,17-Diaryl-1,3,5,16-estratetraenes. Synlett, 2019, 30, 600-604.	1.8	3
57	Synthesis and evaluation of AKR1C inhibitory properties of A-ring halogenated oestrone derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 1499-1507.	5.2	3
58	Novel preparation of substituted oxazolines condensed to d-ring of estrane skeleton and characterization of their antiproliferative properties. Steroids, 2021, 176, 108911.	1.8	3
59	Microwave-assisted Phospha-Michael addition reactions in the 13α-oestrone series and <i>in vitro</i> antiproliferative properties. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 1931-1937.	5.2	3
60	Transition metal-catalysed A-ring C–H activations and C(sp2)–C(sp2) couplings in the 13α-oestrone series and inÂvitro evaluation of antiproliferative properties. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 895-902.	5.2	2
61	Selective antiproliferative effect of C-2 halogenated 13î±-estrones on cells expressing Organic anion-transporting polypeptide 2B1 (OATP2B1). Toxicology and Applied Pharmacology, 2021, 429, 115704.	2.8	2
62	Stereoselective Synthesis of Condensed Aza-d-homo-estrone Derivatives by 1,3-Dipolar Cycloaddition. Synlett, 2005, 2005, 637-639.	1.8	1
63	Synthesis of substituted $15\hat{l}^2$ -alkoxy estrone derivatives and their cofactor-dependent inhibitory effect on $17\hat{l}^2$ -HSD1. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1271-1286.	5.2	1
64	Improved stereoselective synthesis of 3-methoxy- and 3-benzyloxy-16-hydroxymethyl-13α-estra-1,3,5(10)-trien-17-ol isomers by transfer hydrogenation using chiral Ru catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 47-53.	1.7	0