Anne Seidlitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9332897/publications.pdf Version: 2024-02-01

ANNE SEIDUTZ

#	Article	IF	CITATIONS
1	Assessment of different polymers and drug loads for fused deposition modeling of drug loaded implants. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 115, 84-93.	4.3	139
2	Immediate Release 3D-Printed Tablets Produced Via Fused Deposition Modeling of a Thermo-Sensitive Drug. Pharmaceutical Research, 2018, 35, 124.	3.5	115
3	Determination of permeability coefficients of ophthalmic drugs through different layers of porcine, rabbit and bovine eyes. European Journal of Pharmaceutical Sciences, 2012, 47, 131-138.	4.0	80
4	3D-Printing of Drug-Eluting Implants: An Overview of the Current Developments Described in the Literature. Molecules, 2021, 26, 4066.	3.8	45
5	Development of a dual extrusion printing technique for an acid- and thermo-labile drug. European Journal of Pharmaceutical Sciences, 2018, 123, 191-198.	4.0	42
6	Examination of drug release and distribution from drug-eluting stents with a vessel-simulating flow-through cell. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 78, 36-48.	4.3	38
7	In Vitro Determination of Drug Transfer from Drug-Coated Balloons. PLoS ONE, 2013, 8, e83992.	2.5	35
8	In-vitro dissolution methods for controlled release parenterals and their applicability to drug-eluting stent testing. Journal of Pharmacy and Pharmacology, 2012, 64, 969-985.	2.4	33
9	In vitro evaluation of paclitaxel coatings for delivery via drug-coated balloons. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 322-328.	4.3	31
10	3D Printing of Mini Tablets for Pediatric Use. Pharmaceuticals, 2021, 14, 143.	3.8	29
11	In vitro study of sirolimus release from a drug-eluting stent: Comparison of the release profiles obtained using different test setups. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 93, 328-338.	4.3	21
12	Simulation of Drug Distribution in the Vitreous Body After Local Drug Application into Intact Vitreous Body and in Progress of Posterior Vitreous Detachment. Journal of Pharmaceutical Sciences, 2014, 103, 517-526.	3.3	19
13	Development of Hydrophobized Alginate Hydrogels for the Vessel-Simulating Flow-Through Cell and Their Usage for Biorelevant Drug-Eluting Stent Testing. AAPS PharmSciTech, 2013, 14, 1209-1218.	3.3	18
14	Influence of the test method on in vitro drug release from intravitreal model implants containing dexamethasone or fluorescein sodium in poly (d,l-lactide-co-glycolide) or polycaprolactone. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 270-278.	4.3	17
15	Simultaneous magnetic resonance imaging and pharmacokinetic analysis of intramuscular depots. Journal of Controlled Release, 2016, 227, 1-12.	9.9	15
16	Pharmacokinetics of 1-methyl-L-tryptophan after single and repeated subcutaneous application in a porcine model. Experimental Animals, 2016, 65, 147-155.	1.1	12
17	Long-term stable hydrogels for biorelevant dissolution testing of drug-eluting stents. Journal of Pharmaceutical Technology & Drug Research, 2013, 2, 19.	1.0	12
18	Impact of different tissue-simulating hydrogel compartments on in vitro release and distribution from drug-eluting stents. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 570-578.	4.3	11

ANNE SEIDLITZ

#	Article	IF	CITATIONS
19	Effects of 1-Methyltryptophan on Immune Responses and the Kynurenine Pathway after Lipopolysaccharide Challenge in Pigs. International Journal of Molecular Sciences, 2018, 19, 3009.	4.1	11
20	Distribution of fluorescein sodium and triamcinolone acetonide in the simulated liquefied and vitrectomized Vitreous Model with simulated eye movements. European Journal of Pharmaceutical Sciences, 2017, 109, 233-243.	4.0	9
21	In vitro dissolution testing of drug-eluting stents. Current Pharmaceutical Biotechnology, 2013, 14, 67-75.	1.6	9
22	Muscle Injury After Intramuscular Administration of Diclofenac: A Case Report Supported by Magnetic Resonance Imaging. Drug Safety - Case Reports, 2017, 4, 7.	0.9	8
23	In vitro dissolution testing of parenteral aqueous solutions and oily suspensions of paracetamol and prednisolone. International Journal of Pharmaceutics, 2017, 532, 519-527.	5.2	8
24	7.1 T MRI and T2 mapping of the human and porcine vitreous body post mortem. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 131, 82-91.	4.3	8
25	The EyeFlowCell: Development of a 3D-Printed Dissolution Test Setup for Intravitreal Dosage Forms. Pharmaceutics, 2021, 13, 1394.	4.5	8
26	In Vitro Dissolution Testing of Drug-Eluting Stents. Current Pharmaceutical Biotechnology, 2013, 14, 67-75.	1.6	7
27	Controlling drug delivery from coronary stents: are we aiming for the right targets?. Therapeutic Delivery, 2015, 6, 705-720.	2.2	5
28	Evaluation of the suitability of a fluidized bed process for the coating of drug-eluting stents. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 139, 85-92.	4.3	4
29	Glycerol gelatin for 3D-printing of implants using a paste extrusion technique. Current Directions in Biomedical Engineering, 2017, 3, 389-392.	0.4	3
30	Influence of Dissolution Vessel Geometry and Dissolution Medium on In Vitro Dissolution Behaviour of Triamterene-Coated Model Stents in Different Test Setups. AAPS PharmSciTech, 2019, 20, 27.	3.3	3
31	MR imaging of model drug distribution in simulated vitreous. Current Directions in Biomedical Engineering, 2015, 1, 236-239.	0.4	2
32	Influence of Siluron® insertion on model drug distribution in the simulated vitreous body. Current Directions in Biomedical Engineering, 2016, 2, 665-668.	0.4	1
33	<i>In vitro</i> simulation of distribution processes following intramuscular injection. Current Directions in Biomedical Engineering, 2016, 2, 383-386.	0.4	0