Michael Schulz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9332830/publications.pdf Version: 2024-02-01

	8755	5255
31,846	75	165
citations	h-index	g-index
004	004	10001
234	234	19201
docs citations	times ranked	citing authors
	citations 234	31,846 75 citations h-index 234 234

#	Article	IF	CITATIONS
1	Uncertainties in assessing radiative forcing by mineral dust. Tellus, Series B: Chemical and Physical Meteorology, 2022, 50, 491.	1.6	111
2	Biomass burning aerosols in most climate models are too absorbing. Nature Communications, 2021, 12, 277.	12.8	84
3	AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations. Atmospheric Chemistry and Physics, 2021, 21, 87-128.	4.9	96
4	Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison. Atmospheric Chemistry and Physics, 2021, 21, 853-874.	4.9	65
5	AEROCOM and AEROSAT AAOD and SSA study – PartÂ1: Evaluation and intercomparison of satellite measurements. Atmospheric Chemistry and Physics, 2021, 21, 6895-6917.	4.9	27
6	Evaluation of natural aerosols in CRESCENDO Earth system models (ESMs): mineral dust. Atmospheric Chemistry and Physics, 2021, 21, 10295-10335.	4.9	20
7	Energy Budget Constraints on the Time History of Aerosol Forcing and Climate Sensitivity. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033622.	3.3	25
8	Understanding Topâ€ofâ€Atmosphere Flux Bias in the AeroCom Phase III Models: A Clearâ€Sky Perspective. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002584.	3.8	4
9	Shutdown of Southern Ocean convection controls long-term greenhouse gas-induced warming. Nature Geoscience, 2021, 14, 724-731.	12.9	19
10	Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models. Atmospheric Chemistry and Physics, 2021, 21, 1105-1126.	4.9	39
11	Aerosol absorption in global models from AeroCom phase III. Atmospheric Chemistry and Physics, 2021, 21, 15929-15947.	4.9	27
12	Bounding Global Aerosol Radiative Forcing of Climate Change. Reviews of Geophysics, 2020, 58, e2019RG000660.	23.0	424
13	Fast responses on pre-industrial climate from present-day aerosols in a CMIP6 multi-model study. Atmospheric Chemistry and Physics, 2020, 20, 8381-8404.	4.9	18
14	Prediction of source contributions to urban background PM ₁₀ concentrations in European cities: a case study for an episode in December 2016 using EMEP/MSC-W rv4.15 and LOTOS-EUROS v2.0 – Part 1: The country contributions. Geoscientific Model Development, 2020, 13, 1787-1807.	3.6	17
15	A global model–measurement evaluation of particle light scattering coefficients at elevated relative humidity. Atmospheric Chemistry and Physics, 2020, 20, 10231-10258.	4.9	19
16	Effects of global ship emissions on European air pollution levels. Atmospheric Chemistry and Physics, 2020, 20, 11399-11422.	4.9	47
17	An AeroCom–AeroSat study: intercomparison of satellite AOD datasets for aerosol model evaluation. Atmospheric Chemistry and Physics, 2020, 20, 12431-12457.	4.9	40
18	Evaluation of climate model aerosol trends with ground-based observations over the last 2Âdecades – an AeroCom and CMIP6 analysis. Atmospheric Chemistry and Physics, 2020, 20, 13355-13378.	4.9	38

#	Article	IF	CITATIONS
19	Historical and future changes in air pollutants from CMIP6 models. Atmospheric Chemistry and Physics, 2020, 20, 14547-14579.	4.9	105
20	Bias in CMIP6 models as compared to observed regional dimming and brightening. Atmospheric Chemistry and Physics, 2020, 20, 16023-16040.	4.9	25
21	Cloudy-sky contributions to the direct aerosol effect. Atmospheric Chemistry and Physics, 2020, 20, 8855-8865.	4.9	8
22	Climate and air quality impacts due to mitigation of non-methane near-term climate forcers. Atmospheric Chemistry and Physics, 2020, 20, 9641-9663.	4.9	30
23	A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmospheric Measurement Techniques, 2020, 13, 4353-4392.	3.1	65
24	Ocean biogeochemistry in the Norwegian Earth System Model version 2 (NorESM2). Geoscientific Model Development, 2020, 13, 2393-2431.	3.6	68
25	Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geoscientific Model Development, 2020, 13, 6165-6200.	3.6	280
26	ESD Reviews: Climate feedbacks in the Earth system and prospects for their evaluation. Earth System Dynamics, 2019, 10, 379-452.	7.1	46
27	African dust deposition in Puerto Rico: Analysis of a 20-year rainfall chemistry record and comparison with models. Atmospheric Environment, 2019, 216, 116907.	4.1	17
28	The CAMS reanalysis of atmospheric composition. Atmospheric Chemistry and Physics, 2019, 19, 3515-3556.	4.9	524
29	Asian and Transâ€₽acific Dust: A Multimodel and Multiremote Sensing Observation Analysis. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13534-13559.	3.3	24
30	Global and regional trends of atmospheric sulfur. Scientific Reports, 2019, 9, 953.	3.3	166
31	Spatial Representativeness Error in the Ground‣evel Observation Networks for Black Carbon Radiation Absorption. Geophysical Research Letters, 2018, 45, 2106-2114.	4.0	18
32	Aerosol Absorption: Progress Towards Global and Regional Constraints. Current Climate Change Reports, 2018, 4, 65-83.	8.6	103
33	Climate Response to Aerosol Geoengineering: A Multimethod Comparison. Journal of Climate, 2018, 31, 6319-6340.	3.2	20
34	Concentrations and radiative forcing of anthropogenic aerosols from 1750 to 2014 simulated with the OsloÂCTM3 and CEDS emission inventory. Geoscientific Model Development, 2018, 11, 4909-4931.	3.6	35
35	Strong impacts on aerosol indirect effects from historical oxidant changes. Atmospheric Chemistry and Physics, 2018, 18, 7669-7690.	4.9	34
36	Long-range transport impacts on surface aerosol concentrations and the contributions to haze events in China: an HTAP2 multi-model study. Atmospheric Chemistry and Physics, 2018, 18, 15581-15600.	4.9	12

#	Article	IF	CITATIONS
37	The effects of intercontinental emission sources on European air pollution levels. Atmospheric Chemistry and Physics, 2018, 18, 13655-13672.	4.9	34
38	A production-tagged aerosol module for Earth system models, OsloAero5.3 – extensions and updates for CAM5.3-Oslo. Geoscientific Model Development, 2018, 11, 3945-3982.	3.6	44
39	On the spatio-temporal representativeness of observations. Atmospheric Chemistry and Physics, 2017, 17, 9761-9780.	4.9	84
40	Aerosols at the poles: an AeroCom Phase II multi-model evaluation. Atmospheric Chemistry and Physics, 2017, 17, 12197-12218.	4.9	58
41	Investigation of global particulate nitrate from the AeroCom phaseÂIII experiment. Atmospheric Chemistry and Physics, 2017, 17, 12911-12940.	4.9	99
42	Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the periodÂ1990–2015. Atmospheric Chemistry and Physics, 2017, 17, 2709-2720.	4.9	87
43	Technical note: Coordination and harmonization of the multi-scale, multi-model activities HTAP2, AQMEII3, and MICS-Asia3: simulations, emission inventories, boundary conditions, and modelÂoutputÂformats. Atmospheric Chemistry and Physics, 2017, 17, 1543-1555.	4.9	81
44	Uncertainty assessment and applicability of an inversion method for volcanic ash forecasting. Atmospheric Chemistry and Physics, 2017, 17, 9205-9222.	4.9	4
45	AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6. Geoscientific Model Development, 2017, 10, 585-607.	3.6	202
46	The operational eEMEP model version 10.4 for volcanic SO ₂ and ash forecasting. Geoscientific Model Development, 2017, 10, 1927-1943.	3.6	3
47	Development, Production and Evaluation of Aerosol Climate Data Records from European Satellite Observations (Aerosol_cci). Remote Sensing, 2016, 8, 421.	4.0	131
48	Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7254-7283.	3.3	80
49	Recommendations for diagnosing effective radiative forcing from climate models for CMIP6. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,460.	3.3	161
50	Global and regional radiative forcing from 20â€ [–] % reductions in BC, OC and SO ₄ – an HTAP2 multi-model study. Atmospheric Chemistry and Physics, 2016, 16, 13579-13599.	4.9	42
51	Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models. Atmospheric Chemistry and Physics, 2016, 16, 3525-3561.	4.9	75
52	What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II. Atmospheric Chemistry and Physics, 2016, 16, 2221-2241.	4.9	82
53	Forecasting the northern African dust outbreak towards Europe in April 2011: a model intercomparison. Atmospheric Chemistry and Physics, 2016, 16, 4967-4986.	4.9	32
54	Multi-model evaluation of short-lived pollutant distributions over east Asia during summer 2008. Atmospheric Chemistry and Physics, 2016, 16, 10765-10792.	4.9	17

#	Article	IF	CITATIONS
55	Will a perfect model agree with perfect observations? The impact of spatial sampling. Atmospheric Chemistry and Physics, 2016, 16, 6335-6353.	4.9	108
56	A model study of the pollution effects of the first 3 months of the Holuhraun volcanic fissure: comparison with observations and air pollution effects. Atmospheric Chemistry and Physics, 2016, 16, 9745-9760.	4.9	8
57	Modeling the distribution and seasonality ofNeogloboquadrina pachydermain the North Atlantic Ocean during Heinrich Stadial 1. Paleoceanography, 2016, 31, 986-1010.	3.0	19
58	Aerosol singleâ€scattering albedo over the global oceans: Comparing PARASOL retrievals with AERONET, OMI, and AeroCom models estimates. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9814-9836.	3.3	58
59	The MACC-II 2007–2008 reanalysis: atmospheric dust evaluation and characterization over northern Africa and the Middle East. Atmospheric Chemistry and Physics, 2015, 15, 3991-4024.	4.9	76
60	Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: a multi-model evaluation using a comprehensive measurement data set. Atmospheric Chemistry and Physics, 2015, 15, 9413-9433.	4.9	145
61	Evaluating the climate and air quality impacts of short-lived pollutants. Atmospheric Chemistry and Physics, 2015, 15, 10529-10566.	4.9	365
62	Validation of reactive gases and aerosols in the MACC global analysis and forecast system. Geoscientific Model Development, 2015, 8, 3523-3543.	3.6	49
63	Performance of European chemistry transport models as function of horizontal resolution. Atmospheric Environment, 2015, 112, 90-105.	4.1	85
64	Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis. Remote Sensing of Environment, 2015, 162, 295-315.	11.0	112
65	Arctic sea ice and atmospheric circulation under the GeoMIP G1 scenario. Journal of Geophysical Research D: Atmospheres, 2014, 119, 567-583.	3.3	45
66	Impacts of intercontinental transport of anthropogenic fine particulate matter on human mortality. Air Quality, Atmosphere and Health, 2014, 7, 369-379.	3.3	64
67	Sources, sinks, and transatlantic transport of North African dust aerosol: A multimodel analysis and comparison with remote sensing data. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6259-6277.	3.3	88
68	Upward adjustment needed for aerosol radiative forcing uncertainty. Nature Climate Change, 2014, 4, 230-232.	18.8	19
69	The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmospheric Chemistry and Physics, 2014, 14, 10845-10895.	4.9	363
70	A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate. Atmospheric Chemistry and Physics, 2014, 14, 11031-11063.	4.9	167
71	Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations. Atmospheric Chemistry and Physics, 2014, 14, 12465-12477.	4.9	157
72	An AeroCom assessment of black carbon in Arctic snow and sea ice. Atmospheric Chemistry and Physics, 2014, 14, 2399-2417.	4.9	86

#	Article	IF	CITATIONS
73	A new method for evaluating the impact of vertical distribution on aerosol radiative forcing in general circulation models. Atmospheric Chemistry and Physics, 2014, 14, 877-897.	4.9	29
74	Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity. Atmospheric Chemistry and Physics, 2014, 14, 4679-4713.	4.9	148
75	Forcings and feedbacks in the GeoMIP ensemble for a reduction in solar irradiance and increase in CO ₂ . Journal of Geophysical Research D: Atmospheres, 2014, 119, 5226-5239.	3.3	19
76	Numerical Dust Models. , 2014, , 201-222.		7
77	Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research D: Atmospheres, 2013, 118, 8320-8332.	3.3	226
78	Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Climate Dynamics, 2013, 40, 2123-2165.	3.8	1,425
79	Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100. Climate Dynamics, 2013, 40, 2223-2250.	3.8	157
80	Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5380-5552.	3.3	4,319
81	Globalâ€scale seasonally resolved black carbon vertical profiles over the Pacific. Geophysical Research Letters, 2013, 40, 5542-5547.	4.0	124
82	The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics. Geoscientific Model Development, 2013, 6, 179-206.	3.6	388
83	Aerosol–climate interactions in the Norwegian Earth System Model – NorESM1-M. Geoscientific Model Development, 2013, 6, 207-244.	3.6	158
84	Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmospheric Chemistry and Physics, 2013, 13, 1853-1877.	4.9	779
85	Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment. Atmospheric Chemistry and Physics, 2013, 13, 2347-2379.	4.9	94
86	Black carbon vertical profiles strongly affect its radiative forcing uncertainty. Atmospheric Chemistry and Physics, 2013, 13, 2423-2434.	4.9	223
87	Radiative forcing in the ACCMIP historical and future climate simulations. Atmospheric Chemistry and Physics, 2013, 13, 2939-2974.	4.9	395
88	Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study. Atmospheric Chemistry and Physics, 2013, 13, 3245-3270.	4.9	143
89	Seaâ€salt injections into the low″atitude marine boundary layer: The transient response in three Earth system models. Journal of Geophysical Research D: Atmospheres, 2013, 118, 12,195.	3.3	35
90	A multimodel assessment of the influence of regional anthropogenic emission reductions on aerosol direct radiative forcing and the role of intercontinental transport. Journal of Geophysical Research D: Atmospheres, 2013, 118, 700-720.	3.3	49

#	Article	IF	CITATIONS
91	The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,036.	3.3	202
92	Aerosol retrieval experiments in the ESA Aerosol_cci project. Atmospheric Measurement Techniques, 2013, 6, 1919-1957.	3.1	76
93	Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO ₂ : climate responses simulated by four earth system models. Earth System Dynamics, 2012, 3, 63-78.	7.1	132
94	Aerosols in the CALIOPE air quality modelling system: evaluation and analysis of PM levels, optical depths and chemical composition over Europe. Atmospheric Chemistry and Physics, 2012, 12, 3363-3392.	4.9	63
95	Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results. Journal of Geophysical Research, 2012, 117, .	3.3	170
96	Atmospheric Transport and Deposition of Mineral Dust to the Ocean: Implications for Research Needs. Environmental Science & Technology, 2012, 46, 10390-10404.	10.0	187
97	Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 3. Evaluation by means of case studies. Journal of Geophysical Research, 2011, 116, .	3.3	53
98	Production flux of sea spray aerosol. Reviews of Geophysics, 2011, 49, .	23.0	458
99	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales. Atmospheric Chemistry and Physics, 2011, 11, 13061-13143.	4.9	278
100	Soot microphysical effects on liquid clouds, a multi-model investigation. Atmospheric Chemistry and Physics, 2011, 11, 1051-1064.	4.9	58
101	Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model – Part 1: Model description, annual simulations and evaluation. Atmospheric Chemistry and Physics, 2011, 11, 13001-13027.	4.9	198
102	Global dust model intercomparison in AeroCom phase I. Atmospheric Chemistry and Physics, 2011, 11, 7781-7816.	4.9	839
103	The Geoengineering Model Intercomparison Project (GeoMIP). Atmospheric Science Letters, 2011, 12, 162-167.	1.9	314
104	Maritime aerosol network as a component of AERONET – first results and comparison with global aerosol models and satellite retrievals. Atmospheric Measurement Techniques, 2011, 4, 583-597.	3.1	152
105	Aerosol Analysis and Forecast in the ECMWF Integrated Forecast System: Evaluation by Means of Case Studies. NATO Science for Peace and Security Series C: Environmental Security, 2011, , 525-528.	0.2	1
106	A multi-model analysis of vertical ozone profiles. Atmospheric Chemistry and Physics, 2010, 10, 5759-5783.	4.9	70
107	African dust deposition to Florida: Temporal and spatial variability and comparisons to models. Journal of Geophysical Research, 2010, 115, .	3.3	100
108	Globalâ€scale black carbon profiles observed in the remote atmosphere and compared to models. Geophysical Research Letters, 2010, 37, .	4.0	172

#	Article	IF	CITATIONS
109	Spatial scales of climate response to inhomogeneous radiative forcing. Journal of Geophysical Research, 2010, 115, .	3.3	79
110	Increase in African dust flux at the onset of commercial agriculture in the Sahel region. Nature, 2010, 466, 226-228.	27.8	247
111	Atmospheric composition change: Climate–Chemistry interactions. Atmospheric Environment, 2009, 43, 5138-5192.	4.1	243
112	Measuring atmospheric composition change. Atmospheric Environment, 2009, 43, 5351-5414.	4.1	160
113	Imprint of North-Atlantic abrupt climate changes on western European loess deposits as viewed in a dust emission model. Quaternary Science Reviews, 2009, 28, 2851-2866.	3.0	61
114	Multimodel estimates of intercontinental sourceâ€receptor relationships for ozone pollution. Journal of Geophysical Research, 2009, 114, .	3.3	430
115	Aerosol analysis and forecast in the European Centre for Mediumâ€Range Weather Forecasts Integrated Forecast System: Forward modeling. Journal of Geophysical Research, 2009, 114, .	3.3	360
116	Modeling the seasonal distribution of planktonic foraminifera during the Last Glacial Maximum. Paleoceanography, 2009, 24, .	3.0	40
117	LMDzT-INCA dust forecast model developments and associated validation efforts. IOP Conference Series: Earth and Environmental Science, 2009, 7, 012014.	0.3	9
118	Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data. Atmospheric Chemistry and Physics, 2009, 9, 8697-8717.	4.9	418
119	Evaluation of black carbon estimations in global aerosol models. Atmospheric Chemistry and Physics, 2009, 9, 9001-9026.	4.9	585
120	What Do We Know about Large-scale Changes of Aerosols, Clouds, and the Radiation Budget?. , 2009, , 401-432.		8
121	Regional modeling of carbonaceous aerosols over Europe—focus on secondary organic aerosols. Journal of Atmospheric Chemistry, 2008, 61, 175-202.	3.2	157
122	What does temporal variability in aeolian dust deposition contribute to seaâ€surface iron and chlorophyll distributions?. Geophysical Research Letters, 2008, 35, .	4.0	55
123	Overview of the Dust and Biomassâ€burning Experiment and African Monsoon Multidisciplinary Analysis Special Observing Periodâ€0. Journal of Geophysical Research, 2008, 113, .	3.3	188
124	Consistent simulation of bromine chemistry from the marine boundary layer to the stratosphere – Part 1: Model description, sea salt aerosols and pH. Atmospheric Chemistry and Physics, 2008, 8, 5899-5917.	4.9	30
125	A multi-model assessment of pollution transport to the Arctic. Atmospheric Chemistry and Physics, 2008, 8, 5353-5372.	4.9	419
126	The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment. Atmospheric Chemistry and Physics, 2007, 7, 4489-4501.	4.9	228

#	Article	IF	CITATIONS
127	Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data. Atmospheric Chemistry and Physics, 2007, 7, 81-95.	4.9	393
128	Assimilation of POLDER aerosol optical thickness into the LMDz-INCA model: Implications for the Arctic aerosol burden. Journal of Geophysical Research, 2007, 112, .	3.3	64
129	Causes of the reduction in uncertainty in the anthropogenic radiative forcing of climate between IPCC (2001) and IPCC (2007). Geophysical Research Letters, 2007, 34, .	4.0	43
130	Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere. Journal of Geophysical Research, 2006, 111, .	3.3	594
131	An AeroCom initial assessment – optical properties in aerosol component modules of global models. Atmospheric Chemistry and Physics, 2006, 6, 1815-1834.	4.9	697
132	Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmospheric Chemistry and Physics, 2006, 6, 4321-4344.	4.9	912
133	Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmospheric Chemistry and Physics, 2006, 6, 5225-5246.	4.9	633
134	A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmospheric Chemistry and Physics, 2006, 6, 613-666.	4.9	745
135	Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmospheric Chemistry and Physics, 2006, 6, 1777-1813.	4.9	1,202
136	The aerosol-climate model ECHAM5-HAM. Atmospheric Chemistry and Physics, 2005, 5, 1125-1156.	4.9	990
137	The vertical distribution of aerosol over Europe—synthesis of one year of EARLINET aerosol lidar measurements and aerosol transport modeling with LMDzT-INCA. Atmospheric Environment, 2005, 39, 2933-2943.	4.1	47
138	Aerosol optical depths and direct radiative perturbations by species and source type. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	82
139	Estimates of global multicomponent aerosol optical depth and direct radiative perturbation in the Laboratoire de Météorologie Dynamique general circulation model. Journal of Geophysical Research, 2005, 110, .	3.3	144
140	Flux divergence of nitric acid in the marine atmospheric surface layer. Journal of Geophysical Research, 2005, 110, .	3.3	15
141	Global modeling of heterogeneous chemistry on mineral aerosol surfaces: Influence on tropospheric ozone chemistry and comparison to observations. Journal of Geophysical Research, 2004, 109, .	3.3	231
142	Significant dust simulation differences in nudged and climatological operation mode of the AGCM ECHAM. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	51
143	Global Emissions of Mineral Aerosol: Formulation and Validation using Satellite Imagery. Advances in Global Change Research, 2004, , 239-267.	1.6	30
144	Sea-salt aerosol source functions and emissions. Advances in Global Change Research, 2004, , 333-359.	1.6	78

#	Article	IF	CITATIONS
145	Open-ocean aerosol composition obtained during 15 months on a North Sea ferry. Atmospheric Environment, 2003, 37, 133-143.	4.1	17
146	Deposition of nitrogen into the North Sea. Atmospheric Environment, 2003, 37, 145-165.	4.1	33
147	Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data. Journal of Geophysical Research, 2003, 108, .	3.3	258
148	Atmospheric nitrogen inputs into the North Sea: effect on productivity. Continental Shelf Research, 2003, 23, 1743-1755.	1.8	48
149	Improving the seasonal cycle and interannual variations of biomass burning aerosol sources. Atmospheric Chemistry and Physics, 2003, 3, 1211-1222.	4.9	85
150	The Global Distribution of Acidifying Wet Deposition. Environmental Science & Technology, 2002, 36, 4382-4388.	10.0	248
151	Influence of the source formulation on modeling the atmospheric global distribution of sea salt aerosol. Journal of Geophysical Research, 2001, 106, 27509-27524.	3.3	167
152	Atmospheric input of nitrogen into the North Sea: ANICE project overview. Continental Shelf Research, 2001, 21, 2073-2094.	1.8	41
153	Aerosol composition and related optical properties in the marine boundary layer over the Baltic Sea. Journal of Aerosol Science, 2001, 32, 933-955.	3.8	18
154	Modeling the atmospheric distribution of mineral aerosol: Comparison with ground measurements and satellite observations for yearly and synoptic timescales over the North Atlantic. Journal of Geophysical Research, 2000, 105, 1997-2012.	3.3	62
155	The North Sea Experiment 1991 (NOSE): A Lagrangian-type experiment. , 2000, , 13-23.		Ο
156	Transformation of Polluted Air Masses when Transported over Sea with respect to Deposition Processes. , 2000, , 85-88.		0
157	Aerosol and Rain Chemistry in the Marine Environment. , 2000, , 65-79.		0
158	The atmospheric impact on fluxes of nitrogen, POPs and energy in the German Bight. Ocean Dynamics, 1999, 51, 133-154.	0.2	16
159	Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments. Journal of Geophysical Research, 1999, 104, 15895-15916.	3.3	595
160	Modeling the mineralogy of atmospheric dust sources. Journal of Geophysical Research, 1999, 104, 22243-22256.	3.3	398
161	Non-rain deposition significantly modifies rain samples at a coastal site. Atmospheric Environment, 1998, 32, 3445-3455.	4.1	11
162	Uncertainties in assessing radiative forcing by mineral dust. Tellus, Series B: Chemical and Physical Meteorology, 1998, 50, 491-505.	1.6	101

#	Article	IF	CITATIONS
163	Role of aerosol size distribution and source location in a three-dimensional simulation of a Saharan dust episode tested against satellite-derived optical thickness. Journal of Geophysical Research, 1998, 103, 10579-10592.	3.3	162
164	Wet deposition in a global size-dependent aerosol transport model: 1. Comparison of a 1 year210Pb simulation with ground measurements. Journal of Geophysical Research, 1998, 103, 11429-11445.	3.3	71
165	Wet deposition in a global size-dependent aerosol transport model: 2. Influence of the scavenging scheme on210Pb vertical profiles, surface concentrations, and deposition. Journal of Geophysical Research, 1998, 103, 28875-28891.	3.3	55
166	Nitrogen fluxes in the German Bight. Marine Pollution Bulletin, 1997, 34, 382-394.	5.0	47
167	Application of total-reflection X-ray fluorescence for the determination of lead, calcium and zinc in size-fractionated marine aerosols. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1997, 52, 995-1001.	2.9	15
168	Importance of the Source Term and of the Size Distribution to Model the Mineral Dust Cycle. Environmental Science and Technology Library, 1996, , 69-76.	0.1	14
169	Intercomparison of elemental concentrations in total and size-fractionated aerosol samples collected during the mace head experiment, April 1991. Atmospheric Environment, 1995, 29, 837-849.	4.1	18
170	High atmospheric nitrogen deposition events over the North Sea. Marine Pollution Bulletin, 1993, 26, 698-703.	5.0	35
171	The use of short term measurements of trace element size-distributions to investigate aerosol dynamics in a marine Lagrangian-type experiment. Journal of Aerosol Science, 1992, 23, 703-706.	3.8	3
172	Variability of aerosol size distributions above the North Sea and its implication to dry deposition estimates. Journal of Aerosol Science, 1989, 20, 1229-1232.	3.8	16