Beth S Nelson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9332825/publications.pdf

Version: 2024-02-01

840585 996849 15 341 11 15 citations h-index g-index papers 32 32 32 560 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Avoiding high ozone pollution in Delhi, India. Faraday Discussions, 2021, 226, 502-514.	1.6	42
2	Sources of non-methane hydrocarbons in surface air in Delhi, India. Faraday Discussions, 2021, 226, 409-431.	1.6	23
3	Comprehensive organic emission profiles, secondary organic aerosol production potential, and OH reactivity of domestic fuel combustion in Delhi, India. Environmental Science Atmospheres, 2021, 1, 104-117.	0.9	11
4	Emissions of non-methane volatile organic compounds from combustion of domestic fuels in Delhi, India. Atmospheric Chemistry and Physics, 2021, 21, 2383-2406.	1.9	29
5	Emissions of intermediate-volatility and semi-volatile organic compounds from domestic fuels used in Delhi, India. Atmospheric Chemistry and Physics, 2021, 21, 2407-2426.	1.9	33
6	Long-term NO _{<i>x</i>} measurements in the remote marine tropical troposphere. Atmospheric Measurement Techniques, 2021, 14, 3071-3085.	1.2	10
7	In situ ozone production is highly sensitive to volatile organic compounds in Delhi, India. Atmospheric Chemistry and Physics, 2021, 21, 13609-13630.	1.9	28
8	Emission estimates and inventories of non-methane volatile organic compounds from anthropogenic burning sources in India. Atmospheric Environment: X, 2021, 11, 100115.	0.8	6
9	Non-methane volatile organic compounds emitted from domestic fuels in Delhi: Emission factors and total city-wide emissions. Atmospheric Environment: X, 2021, 11, 100127.	0.8	5
10	An increasing role for solvent emissions and implications for future measurements of volatile organic compounds. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190328.	1.6	22
11	Trends in stabilisation of Criegee intermediates from alkene ozonolysis. Physical Chemistry Chemical Physics, 2020, 22, 13698-13706.	1.3	16
12	AtChem (version 1), an open-source box model for the Master Chemical Mechanism. Geoscientific Model Development, 2020, 13, 169-183.	1.3	42
13	A comparison of PM _{2.5} -bound polycyclic aromatic hydrocarbons in summer Beijing (China) and Delhi (India). Atmospheric Chemistry and Physics, 2020, 20, 14303-14319.	1.9	30
14	Megacity and local contributions to regional air pollution: an aircraft case study over London. Atmospheric Chemistry and Physics, 2020, 20, 7193-7216.	1.9	6
15	Assessing London CO ₂ , CH ₄ and CO emissions using aircraft measurements and dispersion modelling. Atmospheric Chemistry and Physics, 2019, 19, 8931-8945.	1.9	29