
Nathan Pumplin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9332422/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional characterization of Arabidopsis ARGONAUTE 3 in reproductive tissues. Plant Journal, 2020, 103, 1796-1809.	5.7	22
2	Origin and evolution of the octoploid strawberry genome. Nature Genetics, 2019, 51, 541-547.	21.4	469
3	Structural Flexibility Enables Alternative Maturation, ARGONAUTE Sorting and Activities of miR168, a Global Gene Silencing Regulator in Plants. Molecular Plant, 2018, 11, 1008-1023.	8.3	43
4	A complex of <i>Arabidopsis</i> DRB proteins can impair dsRNA processing. Rna, 2017, 23, 782-797.	3.5	13
5	DNA Methylation Influences the Expression of <i>DICER-LIKE4</i> Isoforms, Which Encode Proteins of Alternative Localization and Function. Plant Cell, 2016, 28, 2786-2804.	6.6	41
6	Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics. Nature Plants, 2016, 2, 15208.	9.3	206
7	EXO70I Is Required for Development of a Sub-domain of the Periarbuscular Membrane during Arbuscular Mycorrhizal Symbiosis. Current Biology, 2015, 25, 2189-2195.	3.9	120
8	Suppression of Arbuscule Degeneration in <i>Medicago truncatula phosphate transporter4</i> Mutants Is Dependent on the Ammonium Transporter 2 Family Protein AMT2;3. Plant Cell, 2015, 27, 1352-1366.	6.6	180
9	RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nature Reviews Microbiology, 2013, 11, 745-760.	28.6	546
10	DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E5025-34.	7.1	266
11	Polar localization of a symbiosis-specific phosphate transporter is mediated by a transient reorientation of secretion. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E665-72.	7.1	164
12	A Critical Role of <i>STAYGREEN</i> /Mendel's <i>I</i> Locus in Controlling Disease Symptom Development during <i>Pseudomonas syringae</i> pv <i>tomato</i> Infection of Arabidopsis Â. Plant Physiology, 2011, 157, 1965-1974.	4.8	41
13	<i>Medicago truncatula</i> Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. Plant Journal, 2010, 61, 482-494.	5.7	198
14	Phosphate Transporters in Arbuscular Mycorrhizal Symbiosis. , 2010, , 117-135.		12
15	Live-Cell Imaging Reveals Periarbuscular Membrane Domains and Organelle Location in <i>Medicago truncatula</i> Roots during Arbuscular Mycorrhizal Symbiosis Â. Plant Physiology, 2009, 151, 809-819.	4.8	215
16	Closely Related Members of the Medicago truncatula PHT1 Phosphate Transporter Gene Family Encode Phosphate Transporters with Distinct Biochemical Activities. Journal of Biological Chemistry, 2008, 283, 24673-24681.	3.4	87
17	Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant, Cell and Environment, 2007, 30, 310-322.	5.7	339
18	A Bacterial Virulence Protein Suppresses Host Innate Immunity to Cause Plant Disease. Science, 2006, 313, 220-223.	12.6	438