
Lars Hernquist

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/933212/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The dust-continuum size of TNG50 galaxies at <i>z</i> Â= 1–5: a comparison with the distribution of stellar light, stars, dust, and H2. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3321-3334.	4.4	37
2	High-redshift predictions from IllustrisTNG – III. Infrared luminosity functions, obscured star formation, and dust temperature of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5560-5578.	4.4	26
3	Dynamics of intermediate-mass black holes wandering in the milky way galaxy using the illustris TNG50 simulation. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2229-2238.	4.4	9
4	Mass of the dynamically hot inner stellar halo predicts the ancient accreted stellar mass. Astronomy and Astrophysics, 2022, 660, A20.	5.1	15
5	Fast, Slow, Early, Late: Quenching Massive Galaxies at z â^¼ 0.8. Astrophysical Journal, 2022, 926, 134.	4.5	70
6	First Results from SMAUG: Insights into Star Formation Conditions from Spatially Resolved ISM Properties in TNG50. Astrophysical Journal, 2022, 926, 139.	4.5	3
7	The evolution of the barred galaxy population in the TNG50 simulation. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5339-5357.	4.4	26
8	Galactic angular momentum in the IllustrisTNG simulation – I. Connection to morphology, halo spin, and black hole mass. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5978-5994.	4.4	21
9	Formation and fate of low-metallicity stars in TNG50. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3602-3615.	4.4	4
10	High and low Sérsic index bulges in Milky Way- and M31-like galaxies: origin and connection to the bar with TNG50. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2537-2555.	4.4	9
11	H <i>α</i> emission in local galaxies: star formation, time variability, and the diffuse ionized gas. Monthly Notices of the Royal Astronomical Society, 2022, 513, 2904-2929.	4.4	29
12	Finding Universal Relations in Subhalo Properties with Artificial Intelligence. Astrophysical Journal, 2022, 927, 85.	4.5	21
13	Percent-level constraints on baryonic feedback with spectral distortion measurements. Physical Review D, 2022, 105, .	4.7	6
14	Breaking baryon-cosmology degeneracy with the electron density power spectrum. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 046.	5.4	11
15	Early-type galaxy density profiles from IllustrisTNG – III. Effects on outer kinematic structure. Monthly Notices of the Royal Astronomical Society, 2022, 513, 6134-6151.	4.4	3
16	The formation of low surface brightness galaxies in the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5840-5852.	4.4	8
17	The formation of the first quasars: the black hole seeds, accretion, and feedback models. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5583-5606.	4.4	10
18	The <scp>thesan</scp> project: predictions for multitracer line intensity mapping in the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3857-3878.	4.4	31

#	Article	IF	CITATIONS
19	Morphological decomposition of TNG50 galaxies: methodology and catalogue. Monthly Notices of the Royal Astronomical Society, 2022, 515, 1524-1543.	4.4	12
20	On the formation of massive quiescent galaxies with diverse morphologies in the TNG50 simulation. Monthly Notices of the Royal Astronomical Society, 2022, 515, 213-228.	4.4	16
21	The Low-redshift Lyα Forest as a Constraint for Models of AGN Feedback. Astrophysical Journal Letters, 2022, 933, L46.	8.3	8
22	The Circumgalactic Medium from the CAMELS Simulations: Forecasting Constraints on Feedback Processes from Future Sunyaev–Zeldovich Observations. Astrophysical Journal, 2022, 933, 133.	4.5	11
23	Spatially resolved star formation and fuelling in galaxy interactions. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3113-3133.	4.4	52
24	The TNG50 Simulation: Highly-Resolved Galaxies in a Large Cosmological Volume to the Present Day. , 2021, , 5-22.		0
25	Submillimetre galaxies in cosmological hydrodynamical simulations – an opportunity for constraining feedback models. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2922-2933.	4.4	20
26	Hot and counter-rotating star-forming disc galaxies in IllustrisTNG and their real-world counterparts. Monthly Notices of the Royal Astronomical Society, 2021, 503, 726-742.	4.4	11
27	Supermassive black holes in cosmological simulations I: <i>M</i> BH â~' <i>M</i> â<† relation and black hole mass function. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1940-1975.	4.4	63
28	Characterizing hydrostatic mass bias with <scp>mock-X</scp> . Monthly Notices of the Royal Astronomical Society, 2021, 506, 2533-2550.	4.4	22
29	Morphological Types of DM Halos in Milky Way-like Galaxies in the TNG50 Simulation: Simple, Twisted, or Stretched. Astrophysical Journal, 2021, 913, 36.	4.5	15
30	Anisotropic satellite galaxy quenching modulated by black hole activity. Nature, 2021, 594, 187-190.	27.8	27
31	How Flat Can a Planetary System Get? I. The Case of TRAPPIST-1. Astrophysical Journal, 2021, 913, 126.	4.5	2
32	The physical origins and dominant emission mechanisms of Lyman alpha haloes: results from the TNG50 simulation in comparison to MUSE observations. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5129-5152.	4.4	38
33	The CAMELS Project: Cosmology and Astrophysics with Machine-learning Simulations. Astrophysical Journal, 2021, 915, 71.	4.5	113
34	Quenched fractions in the IllustrisTNG simulations: comparison with observations and other theoretical models. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4760-4780.	4.4	66
35	Efficient early stellar feedback can suppress galactic outflows by reducing supernova clustering. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3882-3915.	4.4	48
36	Inferring the Morphology of Stellar Distribution in TNG50: Twisted and Twisted-stretched Shapes. Astrophysical Journal, 2021, 918, 7.	4.5	9

#	Article	IF	CITATIONS
37	Spatially resolved star formation and inside-out quenching in the TNG50 simulation and 3D-HST observations. Monthly Notices of the Royal Astronomical Society, 2021, 508, 219-235.	4.4	56
38	The abundance of satellites around Milky Way- and M31-like galaxies with the TNG50 simulation: a matter of diversity. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4211-4240.	4.4	41
39	Impact of gas-based seeding on supermassive black hole populations at <i>z</i> ≥ 7. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2012-2036.	4.4	5
40	Cosmological Simulations of Quasar Fueling to Subparsec Scales Using Lagrangian Hyper-refinement. Astrophysical Journal, 2021, 917, 53.	4.5	49
41	Predictions for anisotropic X-ray signatures in the circumgalactic medium: imprints of supermassive black hole driven outflows. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1563-1581.	4.4	21
42	Galaxy assembly bias and large-scale distribution: a comparison between IllustrisTNG and a semi-analytic model. Monthly Notices of the Royal Astronomical Society, 2021, 508, 698-718.	4.4	22
43	The cumulative star formation histories of dwarf galaxies with TNG50. I: environment-driven diversity and connection to quenching. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1652-1674.	4.4	32
44	Fragmentation of ring galaxies and transformation to clumpy galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 507, 6140-6147.	4.4	2
45	Quiescent ultra-diffuse galaxies in the field originating from backsplash orbits. Nature Astronomy, 2021, 5, 1255-1260.	10.1	32
46	Molecular hydrogen in IllustrisTNG galaxies: carefully comparing signatures of environment with local CO and SFR data. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3158-3178.	4.4	25
47	A deep learning approach to test the small-scale galaxy morphology and its relationship with star formation activity in hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4359-4382.	4.4	38
48	X-ray bubbles in the circumgalactic medium of TNG50 Milky Way- and M31-like galaxies: signposts of supermassive black hole activity. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4667-4695.	4.4	36
49	The Evolutionary Pathways of Disk-, Bulge-, and Halo-dominated Galaxies. Astrophysical Journal, 2021, 919, 135.	4.5	15
50	Quenched, bulge-dominated, but dynamically cold galaxies in IllustrisTNG and their real-world counterparts. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5062-5074.	4.4	2
51	Supermassive black holes in cosmological simulations $\hat{a} \in$ II: the AGN population and predictions for upcoming X-ray missions. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3015-3042.	4.4	27
52	From large-scale environment to CGM angular momentum to star-forming activities – I. Star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3148-3162.	4.4	17
53	Impact of gas spin and Lyman–Werner flux on black hole seed formation in cosmological simulations: implications for direct collapse. Monthly Notices of the Royal Astronomical Society, 2021, 510, 177-196.	4.4	3
54	The large-scale distribution of ionized metals in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2021, 510, 399-412.	4.4	6

#	Article	IF	CITATIONS
55	A Comparison of Circumgalactic Mg ii Absorption between the TNG50 Simulation and the MEGAFLOW Survey. Astrophysical Journal, 2021, 923, 56.	4.5	12
56	Resolving small-scale cold circumgalactic gas in TNG50. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2391-2414.	4.4	100
57	Kinematic Decomposition of IllustrisTNG Disk Galaxies: Morphology and Relation with Morphological Structures. Astrophysical Journal, 2020, 895, 139.	4.5	22
58	Predictions for the angular dependence of gas mass flow rate and metallicity in the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2462-2473.	4.4	58
59	The formation of ultradiffuse galaxies in clusters. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1848-1858.	4.4	68
60	The fate of disc galaxies in IllustrisTNG clusters. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2673-2703.	4.4	53
61	Limitations to the â€~basic' HOD model and beyond. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5506-5519.	4.4	60
62	A redshift-dependent IRX–β dust attenuation relation for TNG50 galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4773-4794.	4.4	21
63	The diversity and variability of star formation histories in models of galaxy evolution. Monthly Notices of the Royal Astronomical Society, 2020, 498, 430-463.	4.4	62
64	The effect of differential accretion on the gravitational wave background and the present-day MBH binary population. Monthly Notices of the Royal Astronomical Society, 2020, 498, 537-547.	4.4	20
65	Tidally induced warps of spiral galaxies in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3535-3548.	4.4	18
66	Joint galaxy–galaxy lensing and clustering constraints on galaxy formation. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5804-5833.	4.4	11
67	High-redshift <i>JWST</i> predictions from IllustrisTNG: II. Galaxy line and continuum spectral indices and dust attenuation curves. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4747-4768.	4.4	31
68	Galaxy formation with BECDM – II. Cosmic filaments and first galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2027-2044.	4.4	58
69	Early-type galaxy density profiles from IllustrisTNG – I. Galaxy correlations and the impact of baryons. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5188-5215.	4.4	26
70	X-ray signatures of black hole feedback: hot galactic atmospheres in IllustrisTNG and X-ray observations. Monthly Notices of the Royal Astronomical Society, 2020, 494, 549-570.	4.4	44
71	A missing outskirts problem? Comparisons between stellar haloes in the Dragonfly Nearby Galaxies Survey and the TNG100 simulation. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4570-4604.	4.4	31
72	Redshift evolution of the Fundamental Plane relation in the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5930-5939.	4.4	12

#	Article	IF	CITATIONS
73	Cosmological insights into the assembly of the radial and compact stellar halo of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2020, 495, 29-39.	4.4	19
74	High-redshift <i>JWST</i> predictions from IllustrisTNC: dust modelling and galaxy luminosity functions. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5167-5201.	4.4	99
75	Baryons in the Cosmic Web of IllustrisTNG – II. The connection among galaxies, haloes, their formation time, and their location in the Cosmic Web. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5747-5758.	4.4	27
76	Galaxy interactions in IllustrisTNG-100, I: The power and limitations of visual identification. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2075-2094.	4.4	25
77	The relationship between black hole mass and galaxy properties: examining the black hole feedback model in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1888-1906.	4.4	127
78	The Formation History of Subhalos and the Evolution of Satellite Galaxies. Astrophysical Journal, 2020, 893, 139.	4.5	14
79	Efficacy of early stellar feedback in low gas surface density environments. Monthly Notices of the Royal Astronomical Society, 2020, 491, 2088-2103.	4.4	28
80	Quenched fractions in the IllustrisTNG simulations: the roles of AGN feedback, environment, and pre-processing. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4004-4024.	4.4	86
81	Simulating the interstellar medium of galaxies with radiative transfer, non-equilibrium thermochemistry, and dust. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5732-5748.	4.4	27
82	The kinematics and dark matter fractions of TNG50 galaxies at <i>z</i> = 2 from an observational perspective. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4597-4619.	4.4	17
83	The distinct stellar-to-halo mass relations of satellite and central galaxies: insights from the IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3957-3975.	4.4	32
84	Extensions to models of the galaxy–halo connection. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1603-1620.	4.4	36
85	The Angular Momentum of the Circumgalactic Medium in the TNG100 Simulation. Astrophysical Journal, 2020, 895, 17.	4.5	26
86	Correlations between Black Holes and Host Galaxies in the Illustris and IllustrisTNG Simulations. Astrophysical Journal, 2020, 895, 102.	4.5	24
87	First Results from SMAUG: Characterization of Multiphase Galactic Outflows from a Suite of Local Star-forming Galactic Disk Simulations. Astrophysical Journal, 2020, 900, 61.	4.5	68
88	First Results from SMAUG: Uncovering the Origin of the Multiphase Circumgalactic Medium with a Comparative Analysis of Idealized and Cosmological Simulations. Astrophysical Journal, 2020, 903, 32.	4.5	38
89	First Results from SMAUG: The Need for Preventative Stellar Feedback and Improved Baryon Cycling in Semianalytic Models of Galaxy Formation. Astrophysical Journal, 2020, 905, 4.	4.5	25
90	A Framework for Multiphase Galactic Wind Launching Using TIGRESS. Astrophysical Journal Letters, 2020, 903, L34.	8.3	27

#	Article	IF	CITATIONS
91	Stellar and weak lensing profiles of massive galaxies in the Hyper-Suprime Cam survey and in hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2020, 500, 432-447.	4.4	15
92	The IllustrisTNG simulations: public data release. Computational Astrophysics and Cosmology, 2019, 6,	22.7	698
93	Simulating the effect of photoheating feedback during reionization. Monthly Notices of the Royal Astronomical Society, 2019, 488, 419-437.	4.4	23
94	Morphology and star formation in IllustrisTNG: the build-up of spheroids and discs. Monthly Notices of the Royal Astronomical Society, 2019, 487, 5416-5440.	4.4	109
95	Separate Universe simulations with IllustrisTNG: baryonic effects on power spectrum responses and higher-order statistics. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2079-2092.	4.4	39
96	First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3196-3233.	4.4	453
97	Revealing the galaxy–halo connection in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5693-5711.	4.4	59
98	Imprints of temperature fluctuations on the z â^¼ 5 Lyman-α forest: a view from radiation-hydrodynamic simulations of reionization. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3177-3195.	4.4	33
99	Deep learning predictions of galaxy merger stage and the importance of observational realism. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5390-5413.	4.4	69
100	Early-type galaxy density profiles from IllustrisTNG – II. Evolutionary trend of the total density profile. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5722-5738.	4.4	19
101	Identifying Kinematic Structures in Simulated Galaxies Using Unsupervised Machine Learning. Astrophysical Journal, 2019, 884, 129.	4.5	21
102	First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3234-3261.	4.4	510
103	First Star-Forming Structures in Fuzzy Cosmic Filaments. Physical Review Letters, 2019, 123, 141301.	7.8	94
104	Implications of a Time-varying Galactic Potential for Determinations of the Dynamical Surface Density. Astrophysical Journal Letters, 2019, 879, L15.	8.3	22
105	A study of stellar orbit fractions: simulated IllustrisTNG galaxies compared to CALIFA observations. Monthly Notices of the Royal Astronomical Society, 2019, 489, 842-854.	4.4	19
106	Enhancing AGN efficiency and cool-core formation with anisotropic thermal conduction. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3003-3013.	4.4	22
107	Shape of dark matter haloes in the Illustris simulation: effects of baryons. Monthly Notices of the Royal Astronomical Society, 2019, 484, 476-493.	4.4	71
108	A Quantification of the Butterfly Effect in Cosmological Simulations and Implications for Galaxy Scaling Relations. Astrophysical Journal, 2019, 871, 21.	4.5	65

#	Article	IF	CITATIONS
109	Automated distant galaxy merger classifications from Space Telescope images using the Illustris simulation. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3702-3720.	4.4	38
110	On the Origin of Star–Gas Counterrotation in Low-mass Galaxies. Astrophysical Journal, 2019, 878, 143.	4.5	37
111	Atomic and molecular gas in IllustrisTNG galaxies at low redshift. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1529-1550.	4.4	67
112	The morphology and kinematics of the gaseous circumgalactic medium of Milky Way mass galaxies – II. Comparison of IllustrisTNG and Illustris simulation results. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4686-4700.	4.4	20
113	Extreme spheres: counts-in-cells for 21cm intensity mapping. Monthly Notices of the Royal Astronomical Society, 2019, 484, 269-281.	4.4	10
114	Baryons in the Cosmic Web of IllustrisTNG – I: gas in knots, filaments, sheets, and voids. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3766-3787.	4.4	120
115	Interacting galaxies on FIRE-2: the connection between enhanced star formation and interstellar gas content. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1320-1338.	4.4	75
116	The star formation activity of IllustrisTNG galaxies: main sequence, UVJ diagram, quenched fractions, and systematics. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4817-4840.	4.4	176
117	Massive BH binaries as periodically variable AGN. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1579-1594.	4.4	44
118	Jellyfish galaxies with the IllustrisTNG simulations – I. Gas-stripping phenomena in the full cosmological context. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1042-1066.	4.4	102
119	Atomic hydrogen in IllustrisTNG galaxies: the impact of environment parallelled with local 21-cm surveys. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5334-5354.	4.4	75
120	Linking galaxy structural properties and star formation activity to black hole activity with IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4413-4443.	4.4	59
121	Zooming in on accretion – II. Cold circumgalactic gas simulated with a super-Lagrangian refinement scheme. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4040-4059.	4.4	78
122	The optical morphologies of galaxies in the IllustrisTNG simulation: a comparison to Pan-STARRS observations. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4140-4159.	4.4	236
123	The ALMA Spectroscopic Survey in the HUDF: the Molecular Gas Content of Galaxies and Tensions with IllustrisTNG and the Santa Cruz SAM. Astrophysical Journal, 2019, 882, 137.	4.5	65
124	Antlia 2's Role in Driving the Ripples in the Outer Gas Disk of the Galaxy. Astrophysical Journal, 2019, 886, 67.	4.5	12
125	The abundance, distribution, and physical nature of highly ionized oxygen O vi, O vii, and O viii in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2018, 477, 450-479.	4.4	133
126	First results from the IllustrisTNG simulations: the galaxy colour bimodality. Monthly Notices of the Royal Astronomical Society, 2018, 475, 624-647.	4.4	894

#	Article	IF	CITATIONS
127	First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 475, 648-675.	4.4	983
128	First results from the IllustrisTNG simulations: matter and galaxy clustering. Monthly Notices of the Royal Astronomical Society, 2018, 475, 676-698.	4.4	1,035
129	Simulating galaxy formation with the IllustrisTNG model. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4077-4106.	4.4	1,144
130	The uniformity and time-invariance of the intra-cluster metal distribution in galaxy clusters from the IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2073-2093.	4.4	71
131	The size evolution of star-forming and quenched galaxies in the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3976-3996.	4.4	195
132	First results from the IllustrisTNG simulations: a tale of two elements – chemical evolution of magnesium and europium. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1206-1224.	4.4	746
133	Single sources in the low-frequency gravitational wave sky: properties and time to detection by pulsar timing arrays. Monthly Notices of the Royal Astronomical Society, 2018, 477, 964-976.	4.4	61
134	The fraction of dark matter within galaxies from the IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1950-1975.	4.4	97
135	Supermassive black holes and their feedback effects in the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4056-4072.	4.4	270
136	A census of cool-core galaxy clusters in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1809-1831.	4.4	68
137	Stellar halos in Illustris: probing the histories of Milky Way-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4004-4016.	4.4	35
138	Formation and incidence of shell galaxies in the Illustris simulation. Monthly Notices of the Royal Astronomical Society, 2018, 480, 1715-1739.	4.4	55
139	Ingredients for 21 cm Intensity Mapping. Astrophysical Journal, 2018, 866, 135.	4.5	139
140	Modeling the Atomic-to-molecular Transition in Cosmological Simulations of Galaxy Formation. Astrophysical Journal, Supplement Series, 2018, 238, 33.	7.7	71
141	Similar star formation rate and metallicity variability time-scales drive the fundamental metallicity relation. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 477, L16-L20.	3.3	75
142	Chemical pre-processing of cluster galaxies over the past 10 billion years in the IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 477, L35-L39.	3.3	21
143	Formation of a Malin 1 analogue in IllustrisTNG by stimulated accretion. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 480, L18-L22.	3.3	27
144	On the OVI abundance in the circumgalactic medium of low-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2966-2982.	4.4	58

#	Article	IF	CITATIONS
145	Moving-mesh Simulations of Star-forming Cores in Magneto-gravo-turbulence. Astrophysical Journal, 2017, 838, 40.	4.5	69
146	Simulating galaxy formation with black hole driven thermal and kinetic feedback. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3291-3308.	4.4	725
147	The Formation and Evolution of Star Clusters in Interacting Galaxies. Astrophysical Journal, 2017, 844, 108.	4.5	20
148	Probing the Hot X-Ray Corona around the Massive Spiral Galaxy, NGC 6753, Using Deep XMM-Newton Observations. Astrophysical Journal, 2017, 850, 98.	4.5	49
149	The role of mergers and halo spin in shaping galaxy morphology. Monthly Notices of the Royal Astronomical Society, 2017, 467, 3083-3098.	4.4	134
150	Unveiling the Role of the Magnetic Field at the Smallest Scales of Star Formation. Astrophysical Journal Letters, 2017, 842, L9.	8.3	66
151	Galaxy formation with BECDM – I. Turbulence and relaxation of idealized haloes. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4559-4570.	4.4	208
152	Galaxies with Shells in the Illustris Simulation: Metallicity Signatures. Galaxies, 2017, 5, 34.	3.0	12
153	Massive close pairs measure rapid galaxy assembly in mergers at high redshift. Monthly Notices of the Royal Astronomical Society, 2017, 468, 207-216.	4.4	68
154	The inner structure of early-type galaxies in the Illustris simulation. Monthly Notices of the Royal Astronomical Society, 2017, 469, 1824-1848.	4.4	62
155	Baryonic impact on the dark matter distribution in Milky Way-sized galaxies and their satellites. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1559-1580.	4.4	106
156	The stellar mass assembly of galaxies in the Illustris simulation: growth by mergers and the spatial distribution of accreted stars. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2371-2390.	4.4	319
157	A moving mesh unstaggered constrained transport scheme for magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 2016, 463, 477-488.	4.4	40
158	On the assembly of dwarf galaxies in clusters and their efficient formation of globular clusters. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2323-2336.	4.4	67
159	The diverse evolutionary paths of simulated high- <i>z</i> massive, compact galaxies to <i>z</i> = 0. Monthly Notices of the Royal Astronomical Society, 2016, 456, 1030-1048.	4.4	96
160	Modelling galactic conformity with the colour–halo age relation in the Illustris simulation. Monthly Notices of the Royal Astronomical Society, 2016, 455, 185-198.	4.4	38
161	Recoiling black holes: prospects for detection and implications of spin alignment. Monthly Notices of the Royal Astronomical Society, 2016, 456, 961-989.	4.4	90
162	Galaxy morphology and star formation in the Illustris Simulation at <i>z</i> Â=Â0. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1886-1908.	4.4	155

#	Article	IF	CITATIONS
163	GALACTIC ANGULAR MOMENTUM IN THE ILLUSTRIS SIMULATION: FEEDBACK AND THE HUBBLE SEQUENCE. Astrophysical Journal Letters, 2015, 804, L40.	8.3	174
164	The merger rate of galaxies in the Illustris simulation: a comparison with observations and semi-empirical models. Monthly Notices of the Royal Astronomical Society, 2015, 449, 49-64.	4.4	472
165	The formation of massive, compact galaxies at zÂ=Â2 in the Illustris simulation. Monthly Notices of the Royal Astronomical Society, 2015, 449, 361-372.	4.4	187
166	The Illustris simulation: the evolving population of black holes across cosmic time. Monthly Notices of the Royal Astronomical Society, 2015, 452, 575-596.	4.4	452
167	Complexity Phenomena and ROMA of the Earth's Magnetospheric Cusp, Hydrodynamic Turbulence, and the Cosmic Web. Pure and Applied Geophysics, 2015, 172, 2025-2043.	1.9	4
168	NUMERICAL CONVERGENCE IN SMOOTHED PARTICLE HYDRODYNAMICS. Astrophysical Journal, 2015, 800, 6.	4.5	74
169	The impact of galactic feedback on the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2015, 448, 895-909.	4.4	82
170	Synthetic galaxy images and spectra from the Illustris simulation. Monthly Notices of the Royal Astronomical Society, 2015, 447, 2753-2771.	4.4	106
171	The colours of satellite galaxies in the Illustris simulation. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 447, L6-L10.	3.3	59
172	The star formation main sequence and stellar mass assembly of galaxies in the Illustris simulation. Monthly Notices of the Royal Astronomical Society, 2015, 447, 3548-3563.	4.4	201
173	HOT GASEOUS CORONAE AROUND SPIRAL GALAXIES: PROBING THE ILLUSTRIS SIMULATION. Astrophysical Journal, 2015, 804, 72.	4.5	40
174	Halo mass and assembly history exposed in the faint outskirts: the stellar and dark matter haloes of Illustris galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 444, 237-249.	4.4	117
175	Galaxy mergers on a moving mesh: a comparison with smoothed particle hydrodynamics. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1992-2016.	4.4	87
176	A constrained transport scheme for MHD on unstructured static and moving meshes. Monthly Notices of the Royal Astronomical Society, 2014, 442, 43-55.	4.4	37
177	Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe. Monthly Notices of the Royal Astronomical Society, 2014, 444, 1518-1547.	4.4	1,694
178	Damped Lyman Î \pm absorbers as a probe of stellar feedback. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2313-2324.	4.4	105
179	Introducing the Illustris project: the evolution of galaxy populations across cosmic time. Monthly Notices of the Royal Astronomical Society, 2014, 445, 175-200.	4.4	805
180	Empirical constraints for the magnitude and composition of galactic winds. Astrophysics and Space Science, 2014, 349, 873-879.	1.4	27

#	Article	IF	CITATIONS
181	A model for cosmological simulations of galaxy formation physics: multi-epoch validation. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1985-2004.	4.4	242
182	A model for cosmological simulations of galaxy formation physics. Monthly Notices of the Royal Astronomical Society, 2013, 436, 3031-3067.	4.4	711
183	Following the flow: tracer particles in astrophysical fluid simulations. Monthly Notices of the Royal Astronomical Society, 2013, 435, 1426-1442.	4.4	107
184	Star formation in galaxy mergers with realistic models of stellar feedback and the interstellar medium. Monthly Notices of the Royal Astronomical Society, 2013, 430, 1901-1927.	4.4	208
185	Moving mesh cosmology: tracing cosmological gas accretion. Monthly Notices of the Royal Astronomical Society, 2013, 429, 3353-3370.	4.4	288
186	Moving mesh cosmology: numerical techniques and global statistics. Monthly Notices of the Royal Astronomical Society, 2012, 425, 3024-3057.	4.4	169
187	Why are active galactic nuclei and host galaxies misaligned?. Monthly Notices of the Royal Astronomical Society, 2012, 425, 1121-1128.	4.4	42
188	Moving-mesh cosmology: characteristics of galaxies and haloes. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2027-2048.	4.4	116
189	Stellar feedback and bulge formation in clumpy discs. Monthly Notices of the Royal Astronomical Society, 2012, 427, 968-978.	4.4	119
190	Moving-mesh cosmology: properties of gas discs. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2224-2238.	4.4	92
191	THE METALLICITY EVOLUTION OF INTERACTING GALAXIES. Astrophysical Journal, 2012, 746, 108.	4.5	164
192	The role of dwarf galaxy interactions in shaping the Magellanic System and implications for Magellanic Irregulars. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2109-2138.	4.4	289
193	A general model for the CO-H2 conversion factor in galaxies with applications to the star formation law. Monthly Notices of the Royal Astronomical Society, 2012, 421, 3127-3146.	4.4	298
194	Moving mesh cosmology: the hydrodynamics of galaxy formation. Monthly Notices of the Royal Astronomical Society, 2012, 424, 2999-3027.	4.4	144
195	MERGERS AND BULGE FORMATION IN \hat{b} CDM: WHICH MERGERS MATTER?. Astrophysical Journal, 2010, 715, 202-229.	4.5	344
196	Cosmic rays from pulsars and magnetars. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 406, L25-L29.	3.3	6
197	Lensing reconstruction of cluster-mass cross correlation with cosmic microwave background polarization. Physical Review D, 2010, 81, .	4.7	16
198	HOW DO DISKS SURVIVE MERGERS?. Astrophysical Journal, 2009, 691, 1168-1201.	4.5	446

#	Article	IF	CITATIONS
199	QUASARS ARE NOT LIGHT BULBS: TESTING MODELS OF QUASAR LIFETIMES WITH THE OBSERVED EDDINGTON RATIO DISTRIBUTION. Astrophysical Journal, 2009, 698, 1550-1569.	4.5	127
200	A NEW CALCULATION OF THE IONIZING BACKGROUND SPECTRUM AND THE EFFECTS OF He II REIONIZATION. Astrophysical Journal, 2009, 703, 1416-1443.	4.5	529
201	RECOVERING STELLAR POPULATION PROPERTIES AND REDSHIFTS FROM BROADBAND PHOTOMETRY OF SIMULATED GALAXIES: LESSONS FOR SED MODELING. Astrophysical Journal, 2009, 696, 348-369.	4.5	87
202	Resonant stripping as the origin of dwarf spheroidal galaxies. Nature, 2009, 460, 605-607.	27.8	87
203	DISSIPATION AND EXTRA LIGHT IN GALACTIC NUCLEI. III. "CORE―ELLIPTICALS AND "MISSING―LIGHT. Astrophysical Journal, Supplement Series, 2009, 181, 486-532.	7.7	127
204	Testing star formation rate indicators using galaxy merger simulations and radiative transfer. Proceedings of the International Astronomical Union, 2009, 5, 257-260.	0.0	0
205	The Distribution and Evolution of Black Hole Mass in Broad Line Quasars. Proceedings of the International Astronomical Union, 2009, 5, 263-263.	0.0	0
206	A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2008, 391, 481-506.	4.4	921
207	A Cosmological Framework for the Coâ€evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity. Astrophysical Journal, Supplement Series, 2008, 175, 356-389.	7.7	1,154
208	The Selfâ€Regulated Growth of Supermassive Black Holes. Astrophysical Journal, 2008, 686, 815-828.	4.5	76
209	Direct Cosmological Simulations of the Growth of Black Holes and Galaxies. Astrophysical Journal, 2008, 676, 33-53.	4.5	423
210	An Observed Fundamental Plane Relation for Supermassive Black Holes. Astrophysical Journal, 2007, 669, 67-73.	4.5	155
211	Are the Magellanic Clouds on Their First Passage about the Milky Way?. Astrophysical Journal, 2007, 668, 949-967.	4.5	417
212	Formation of <i>z</i> â^1⁄46 Quasars from Hierarchical Galaxy Mergers. Astrophysical Journal, 2007, 665, 187-208.	4.5	253
213	Kinematics of globular cluster systems in galaxy mergers. Proceedings of the International Astronomical Union, 2007, 3, 77-78.	0.0	0
214	The Impact of Temperature Fluctuations on the Lyα Forest Power Spectrum. Astrophysical Journal, 2006, 644, 61-70.	4.5	30
215	The Fundamental Scaling Relations of Elliptical Galaxies. Astrophysical Journal, 2006, 641, 21-40.	4.5	267
216	A Unified, Mergerâ€driven Model of the Origin of Starbursts, Quasars, the Cosmic Xâ€Ray Background, Supermassive Black Holes, and Galaxy Spheroids. Astrophysical Journal, Supplement Series, 2006, 163, 1-49.	7.7	1,484

#	Article	IF	CITATIONS
217	Cosmological Parameter Estimation Using 21 cm Radiation from the Epoch of Reionization. Astrophysical Journal, 2006, 653, 815-834.	4.5	385
218	Determining the Properties and Evolution of Red Galaxies from the Quasar Luminosity Function. Astrophysical Journal, Supplement Series, 2006, 163, 50-79.	7.7	145
219	The Kinematic Structure of Merger Remnants. Astrophysical Journal, 2006, 650, 791-811.	4.5	315
220	Formation of a Spiral Galaxy in a Major Merger. Astrophysical Journal, 2005, 622, L9-L12.	4.5	342
221	Modelling feedback from stars and black holes in galaxy mergers. Monthly Notices of the Royal Astronomical Society, 2005, 361, 776-794.	4.4	1,746
222	Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature, 2005, 433, 604-607.	27.8	2,577
223	Damped Lyman-α Absorbers in Cosmological SPH Simulations: the "Metallicity Problem― Symposium - International Astronomical Union, 2005, 216, 266-273.	0.1	1
224	Black Holes in Galaxy Mergers: Evolution of Quasars. Astrophysical Journal, 2005, 630, 705-715.	4.5	497
225	The shapes of simulated dark matter halos. Symposium - International Astronomical Union, 2004, 220, 421-429.	0.1	16
226	Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation. Monthly Notices of the Royal Astronomical Society, 2003, 339, 289-311.	4.4	1,737
227	An analytical model for the history of cosmic star formation. Monthly Notices of the Royal Astronomical Society, 2003, 341, 1253-1267.	4.4	195
228	Cosmic reionization by stellar sources: Population II stars. Monthly Notices of the Royal Astronomical Society, 2003, 344, 607-624.	4.4	151
229	A multi-phase model for simulations of galaxy formation. Symposium - International Astronomical Union, 2003, 208, 273-282.	0.1	2
230	The Angular Momentum of Gas in Protogalaxies. I. Implications for the Formation of Disk Galaxies. Astrophysical Journal, 2002, 576, 21-35.	4.5	201
231	Metal Enrichment of the Intergalactic Medium in Cosmological Simulations. Astrophysical Journal, 2001, 561, 521-549.	4.5	187
232	Tidal Shocking by Extended Mass Distributions. Astrophysical Journal, 1999, 514, 109-118.	4.5	159
233	Transformations of Galaxies. II. Gasdynamics in Merging Disk Galaxies. Astrophysical Journal, 1996, 471, 115-142.	4.5	1,058
234	Gasdynamics and Starbursts in Major Mergers. Astrophysical Journal, 1996, 464, 641.	4.5	1,378

#	Article	IF	CITATIONS
235	Cosmological Simulations with TreeSPH. Astrophysical Journal, Supplement Series, 1996, 105, 19.	7.7	830
236	Excitation of Activity in Galaxies by Minor Mergers. Astrophysical Journal, 1995, 448, 41.	4.5	318
237	Ultraluminous starbursts in major mergers. Astrophysical Journal, 1994, 431, L9.	4.5	359
238	Formation of dwarf galaxies in tidal tails. Nature, 1992, 360, 715-717.	27.8	273
239	Origin of kinematic subsystems in elliptical galaxies. Nature, 1991, 354, 210-212.	27.8	154
240	An analytical model for spherical galaxies and bulges. Astrophysical Journal, 1990, 356, 359.	4.5	2,306
241	Tidal triggering of starbursts and nuclear activity in galaxies. Nature, 1989, 340, 687-691.	27.8	379
242	TREESPH - A unification of SPH with the hierarchical tree method. Astrophysical Journal, Supplement Series, 1989, 70, 419.	7.7	822
243	Performance characteristics of tree codes. Astrophysical Journal, Supplement Series, 1987, 64, 715.	7.7	221
244	A unified model for AGN feedback in cosmological simulations of structure formation. Monthly Notices of the Royal Astronomical Society, 0, 380, 877-900.	4.4	692
245	Statistics of Two-point Correlation and Network Topology for Lyman Alpha Emitters at <i>z</i> â‰^ 2.67. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	3
246	First results from the IllustrisTNG simulations: radio haloes and magnetic fields. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	643
247	The evolution of the mass-metallicity relation and its scatter in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	123
248	The buildup of strongly barred galaxies in the TNG100 simulation. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	36
249	From large-scale environment to CGM angular momentum to star forming activities – II. Quenched galaxies. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	12