Paolo Mariani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9331774/publications.pdf Version: 2024-02-01

Ρλοιο Μαριανί

#	Article	IF	CITATIONS
1	The role of printing techniques for large-area dye sensitized solar cells. Semiconductor Science and Technology, 2015, 30, 104003.	2.0	78
2	Thiazolo[5,4- <i>d</i>]thiazole-based organic sensitizers with improved spectral properties for application in greenhouse-integrated dye-sensitized solar cells. Sustainable Energy and Fuels, 2020, 4, 2309-2321.	4.9	42
3	Stable Semi-Transparent Dye-Sensitized Solar Modules and Panels for Greenhouse Application. Energies, 2021, 14, 6393.	3.1	40
4	Low-Temperature Graphene-Based Paste for Large-Area Carbon Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 22368-22380.	8.0	39
5	Photoelectrochemical and spectrophotometric studies on dye-sensitized solar cells (DSCs) and stable modules (DSCMs) based on natural apocarotenoids pigments. Dyes and Pigments, 2018, 155, 75-83.	3.7	37
6	Practical development of efficient thermoelectric – Photovoltaic hybrid systems based on wide-gap solar cells. Applied Energy, 2021, 300, 117343.	10.1	37
7	Colour-sensitive conjugated polymer inkjet-printed pixelated artificial retina model studied via a bio-hybrid photovoltaic device. Scientific Reports, 2020, 10, 21457.	3.3	13
8	Process Engineering of Semitransparent DSSC Modules and Panel Incorporating an Organic Sensitizer. Solar Rrl, 2022, 6, .	5.8	12
9	Methoxy-substituted copper complexes as possible redox mediators in dye-sensitized solar cells. New Journal of Chemistry, 2021, 45, 15303-15311.	2.8	11
10	Nanocomposites of Nickel Oxide and Zirconia for the Preparation of Photocathodes with Improved Performance in <i>p</i> -Type Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2019, 166, D290-D300.	2.9	10
11	The Golden Fig: A Plasmonic Effect Study of Organic-Based Solar Cells. Nanomaterials, 2022, 12, 267.	4.1	10
12	Graphene-Based Interconnects for Stable Dye-Sensitized Solar Modules. ACS Applied Energy Materials, 2021, 4, 98-110.	5.1	9
13	Scaling-up of Dye Sensitized Solar Modules. World Scientific Series in Nanoscience and Nanotechnology, 2019, , 423-485.	0.1	9
14	Spectral Changes by Dye Sensitized Solar Modules Influence the Pigment Composition and Productivity of <i>Arthrospira maxima</i> and Increase the Overall Energy Efficiency. Advanced Sustainable Systems, 2022, 6, .	5.3	9
15	A novel class of dye-sensitized solar modules. Glass-plastic structure for mechanically stable devices. , 2018, , .		4
16	Ag/MgO Nanoparticles via Gas Aggregation Nanocluster Source for Perovskite Solar Cell Engineering. Materials, 2021, 14, 5507.	2.9	4