
Surendra K Shukla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9331563/publications.pdf Version: 2024-02-01

SUDENDDA K SHUKIA

#	Article	IF	CITATIONS
1	MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. Cancer Cell, 2017, 32, 71-87.e7.	7.7	373
2	Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer & Metabolism, 2014, 2, 18.	2.4	182
3	<i>De Novo</i> Lipid Synthesis Facilitates Gemcitabine Resistance through Endoplasmic Reticulum Stress in Pancreatic Cancer. Cancer Research, 2017, 77, 5503-5517.	0.4	143
4	GOT1-mediated anaplerotic glutamine metabolism regulates chronic acidosis stress in pancreatic cancer cells. Cancer Letters, 2017, 400, 37-46.	3.2	76
5	Silibinin-mediated metabolic reprogramming attenuates pancreatic cancer-induced cachexia and tumor growth. Oncotarget, 2015, 6, 41146-41161.	0.8	75
6	MUC1-Mediated Metabolic Alterations Regulate Response to Radiotherapy in Pancreatic Cancer. Clinical Cancer Research, 2017, 23, 5881-5891.	3.2	73
7	MUC16-mediated activation of mTOR and c-MYC reprograms pancreatic cancer metabolism. Oncotarget, 2015, 6, 19118-19131.	0.8	61
8	Metabolic Rewiring by Loss of Sirt5 Promotes Kras-Induced Pancreatic Cancer Progression. Gastroenterology, 2021, 161, 1584-1600.	0.6	50
9	SIRT1–NOX4 signaling axis regulates cancer cachexia. Journal of Experimental Medicine, 2020, 217, .	4.2	43
10	Role of Curcumin in Common Musculoskeletal Disorders: a Review of Current Laboratory, Translational, and Clinical Data. Orthopaedic Surgery, 2015, 7, 222-231.	0.7	42
11	EGFR-Targeted Polymeric Mixed Micelles Carrying Gemcitabine for Treating Pancreatic Cancer. Biomacromolecules, 2016, 17, 301-313.	2.6	41
12	Macrophages potentiate STAT3 signaling in skeletal muscles and regulate pancreatic cancer cachexia. Cancer Letters, 2020, 484, 29-39.	3.2	39
13	Metabolic Alterations in Pancreatic Cancer Progression. Cancers, 2020, 12, 2.	1.7	38
14	CD73 induces GM-CSF/MDSC-mediated suppression of T cells to accelerate pancreatic cancer pathogenesis. Oncogene, 2022, 41, 971-982.	2.6	29
15	Selective Inhibition of Histone Deacetylases 1/2/6 in Combination with Gemcitabine: A Promising Combination for Pancreatic Cancer Therapy. Cancers, 2019, 11, 1327.	1.7	27
16	JNK signaling contributes to skeletal muscle wasting and protein turnover in pancreatic cancer cacher cachexia. Cancer Letters, 2020, 491, 70-77.	3.2	27
17	Microscale Gene Expression Analysis of Tumor-Associated Macrophages. Scientific Reports, 2018, 8, 2408.	1.6	8
18	Hypoxia-Mediated In Vivo Tumor Glucose Uptake Measurement and Analysis. Methods in Molecular Biology, 2018, 1742, 107-113.	0.4	8

SURENDRA K SHUKLA

#	Article	IF	CITATIONS
19	Visceral adipose tissue remodeling in pancreatic ductal adenocarcinoma cachexia: the role of activin A signaling. Scientific Reports, 2022, 12, 1659.	1.6	8
20	The Synergistic Effect of an ATP-Competitive Inhibitor of mTOR and Metformin on Pancreatic Tumor Growth. Current Developments in Nutrition, 2020, 4, nzaa131.	0.1	6
21	Evaluating the Metabolic Alterations in Pancreatic Cancer. Methods in Molecular Biology, 2019, 1882, 221-228.	0.4	4
22	Molecular and Physiological Evaluation of Pancreatic Cancer-Induced Cachexia. Methods in Molecular Biology, 2019, 1882, 321-333.	0.4	4
23	Transcriptional Profiling Using RNA-Seq to Study Hypoxia-Mediated Gene Regulation. Methods in Molecular Biology, 2018, 1742, 55-66.	0.4	3
24	IgE-Based Therapeutic Combination Enhances Antitumor Response in Preclinical Models of Pancreatic Cancer. Molecular Cancer Therapeutics, 2021, 20, 2457-2468.	1.9	2