Hazel McLellan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9331518/publications.pdf

Version: 2024-02-01

23 papers 1,650 citations

448610 19 h-index 24 g-index

26 all docs

26 docs citations

times ranked

26

1850 citing authors

#	Article	IF	CITATIONS
1	Yeast Two-Hybrid Screening for Identification of in. Methods in Molecular Biology, 2021, 2354, 95-110.	0.4	2
2	The Ubiquitin E3 Ligase PUB17 Positively Regulates Immunity by Targeting a Negative Regulator, KH17, for Degradation. Plant Communications, 2020, 1, 100020.	3.6	15
3	All Roads Lead to Susceptibility: The Many Modes of Action of Fungal and Oomycete Intracellular Effectors. Plant Communications, 2020, 1, 100050.	3.6	90
4	<i>Phytophthora infestans</i> RXLR Effectors Target Parallel Steps in an Immune Signal Transduction Pathway. Plant Physiology, 2019, 180, 2227-2239.	2.3	33
5	<i>Phytophthora infestans</i> RXLR effectors act in concert at diverse subcellular locations to enhance host colonization. Journal of Experimental Botany, 2019, 70, 343-356.	2.4	66
6	<i>Phytophthora infestans</i> effector <scp>SFI</scp> 3 targets potato <scp>UBK</scp> to suppress early immune transcriptional responses. New Phytologist, 2019, 222, 438-454.	3.5	33
7	The oomycete microbe-associated molecular pattern Pep-13 triggers SERK3/BAK1-independent plant immunity. Plant Cell Reports, 2019, 38, 173-182.	2.8	8
8	<i>Phytophthora infestans </i> <scp>RXLR</scp> effector <scp>SFI</scp> 5 requires association with calmodulin for PTI/MTI suppressing activity. New Phytologist, 2018, 219, 1433-1446.	3.5	42
9	Plant pathogen effector utilizes host susceptibility factor NRL1 to degrade the immune regulator SWAP70. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7834-E7843.	3.3	55
10	BTB-BACK Domain Protein POB1 Suppresses Immune Cell Death by Targeting Ubiquitin E3 ligase PUB17 for Degradation. PLoS Genetics, 2017, 13, e1006540.	1.5	41
11	Oomycetes Seek Help from the Plant: Phytophthora infestans Effectors Target Host Susceptibility Factors. Molecular Plant, 2016, 9, 636-638.	3.9	41
12	Inhibition of cathepsin B by caspase-3 inhibitors blocks programmed cell death in Arabidopsis. Cell Death and Differentiation, 2016, 23, 1493-1501.	5.0	80
13	Potato NPH3/RPT2-Like Protein StNRL1, Targeted by a <i>Phytophthora infestans</i> RXLR Effector, Is a Susceptibility Factor. Plant Physiology, 2016, 171, 645-657.	2.3	71
14	A Phytophthora infestans RXLR effector targets plant PP1c isoforms that promote late blight disease. Nature Communications, 2016, 7, 10311.	5.8	123
15	U-box E3 ubiquitin ligase PUB17 acts in the nucleus to promote specific immune pathways triggered by Phytophthora infestans. Journal of Experimental Botany, 2015, 66, 3189-3199.	2.4	47
16	A Host KH RNA-Binding Protein Is a Susceptibility Factor Targeted by an RXLR Effector to Promote Late Blight Disease. Molecular Plant, 2015, 8, 1385-1395.	3.9	62
17	<i>Phytophthora infestans</i> RXLR Effector PexRD2 Interacts with Host MAPKKKε to Suppress Plant Immune Signaling. Plant Cell, 2014, 26, 1345-1359.	3.1	188
18	Functionally Redundant RXLR Effectors from Phytophthora infestans Act at Different Steps to Suppress Early flg22-Triggered Immunity. PLoS Pathogens, 2014, 10, e1004057.	2.1	115

#	Article	IF	CITATION
19	The role of effectors in nonhost resistance to filamentous plant pathogens. Frontiers in Plant Science, 2014, 5, 582.	1.7	59
20	In Vivo Protein–Protein Interaction Studies with BiFC: Conditions, Cautions, and Caveats. Methods in Molecular Biology, 2014, 1127, 81-90.	0.4	10
21	An RxLR Effector from Phytophthora infestans Prevents Re-localisation of Two Plant NAC Transcription Factors from the Endoplasmic Reticulum to the Nucleus. PLoS Pathogens, 2013, 9, e1003670.	2.1	210
22	Functional redundancy in the <i>Arabidopsis Cathepsin B</i> gene family contributes to basal defence, the hypersensitive response and senescence. New Phytologist, 2009, 183, 408-418.	3.5	99
23	Involvement of cathepsin B in the plant disease resistance hypersensitive response. Plant Journal, 2007, 52, 1-13.	2.8	147