Jason M Aliotta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9331096/publications.pdf

Version: 2024-02-01

44 papers

1,593 citations

394421 19 h-index 434195 31 g-index

44 all docs

44 docs citations

44 times ranked 2328 citing authors

#	Article	IF	CITATIONS
1	Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovascular Research, 2016, 110, 319-330.	3.8	196
2	Microvesicle entry into marrow cells mediates tissue-specific changes in mRNA by direct delivery of mRNA and induction of transcription. Experimental Hematology, 2010, 38, 233-245.	0.4	186
3	Alteration of Marrow Cell Gene Expression, Protein Production, and Engraftment into Lung by Lung-Derived Microvesicles: A Novel Mechanism for Phenotype Modulation. Stem Cells, 2007, 25, 2245-2256.	3.2	169
4	Role of extracellular RNA-carrying vesicles in cell differentiation and reprogramming. Stem Cell Research and Therapy, 2015, 6, 153.	5. 5	164
5	The Paradoxical Dynamism of Marrow Stem Cells: Considerations of Stem Cells, Niches, and Microvesicles. Stem Cell Reviews and Reports, 2008, 4, 137-147.	5.6	90
6	Stem cell plasticity revisited: The continuum marrow model and phenotypic changes mediated by microvesicles. Experimental Hematology, 2010, 38, 581-592.	0.4	90
7	Cellular Phenotype and Extracellular Vesicles: Basic and Clinical Considerations. Stem Cells and Development, 2014, 23, 1429-1436.	2.1	70
8	Induction of pulmonary hypertensive changes by extracellular vesicles from monocrotaline-treated mice. Cardiovascular Research, 2013, 100, 354-362.	3.8	65
9	Bone marrow production of lung cells: The impact of G-CSF, cardiotoxin, graded doses of irradiation, and subpopulation phenotype. Experimental Hematology, 2006, 34, 230-241.	0.4	58
10	Microvesicle Induction of Prostate Specific Gene Expression in Normal Human Bone Marrow Cells. Journal of Urology, 2010, 184, 2165-2171.	0.4	55
11	Mesenchymal Stem Cell Extracellular Vesicles Reverse Sugen/Hypoxia Pulmonary Hypertension in Rats. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 577-587.	2.9	54
12	The Stem Cell Continuum. Annals of the New York Academy of Sciences, 2007, 1106, 20-29.	3.8	44
13	Stem cells and pulmonary metamorphosis: New concepts in repair and regeneration. Journal of Cellular Physiology, 2005, 204, 725-741.	4.1	43
14	Progenitor/Stem Cell Fate Determination: Interactive Dynamics of Cell Cycle and Microvesicles. Stem Cells and Development, 2012, 21, 1627-1638.	2.1	43
15	Stable cell fate changes in marrow cells induced by lung \hat{e} derived microvesicles. Journal of Extracellular Vesicles, 2012, 1, .	12.2	40
16	Marrow cell genetic phenotype change induced by human lung cancer cells. Experimental Hematology, 2011, 39, 1072-1080.	0.4	32
17	Conversion Potential of Marrow Cells into Lung Cells Fluctuates with Cytokine-Induced Cell Cycle. Stem Cells and Development, 2008, 17, 207-220.	2.1	29
18	Potential functional applications of extracellular vesicles: a report by the NIH Common Fund Extracellular RNA Communication Consortium. Journal of Extracellular Vesicles, 2015, 4, 27575.	12.2	28

#	Article	IF	Citations
19	Lungâ€derived exosome uptake into and epigenetic modulation of marrow progenitor/stem and differentiated cells. Journal of Extracellular Vesicles, 2015, 4, 26166.	12.2	23
20	Bone Marrow Endothelial Progenitor Cells Are the Cellular Mediators of Pulmonary Hypertension in the Murine Monocrotaline Injury Model. Stem Cells Translational Medicine, 2017, 6, 1595-1606.	3.3	21
21	Intercellular Transfer of Proteins as Identified by Stable Isotope Labeling of Amino Acids in Cell Culture. Journal of Biological Chemistry, 2010, 285, 6285-6297.	3.4	17
22	Marrow Hematopoietic Stem Cells Revisited: They Exist in a Continuum and are Not Defined by Standard Purification Approaches; Then There are the Microvesicles. Frontiers in Oncology, 2014, 4, 56.	2.8	17
23	Marrow Cell Infusion Attenuates Vascular Remodeling in a Murine Model of Monocrotaline-Induced Pulmonary Hypertension. Stem Cells and Development, 2009, 18, 773-781.	2.1	16
24	A new stem cell biology: the continuum and microvesicles. Transactions of the American Clinical and Climatological Association, 2012, 123, 152-66; discussion 166.	0.5	11
25	Daily rhythms influence the ability of lung-derived extracellular vesicles to modulate bone marrow cell phenotype. PLoS ONE, 2018, 13, e0207444.	2.5	9
26	Low dose 100 cGy irradiation as a potential therapy for pulmonary hypertension. Journal of Cellular Physiology, 2019, 234, 21193-21198.	4.1	9
27	Tumor exosomes: a novel biomarker?. Journal of Gastrointestinal Oncology, 2011, 2, 203-5.	1.4	5
28	Endothelial Progenitor Cells Are the Bone Marrow Cell Population in Mice with Monocrotaline-Induced Pulmonary Hypertension Which Induce Pulmonary Hypertension in Healthy Mice. Blood, 2015, 126, 3455-3455.	1.4	3
29	Comparison of analogue and electronic stethoscopes for pulmonary auscultation by internal medicine residents. Postgraduate Medical Journal, 2018, 94, 700-703.	1.8	2
30	Correlation Between Restraint Use and Engaging Family Members in the Care of ICU Patients., 2020, 2, e0255.		2
31	Directed Differentiation: Evolution towards Human Application Blood, 2006, 108, 4187-4187.	1.4	1
32	Differentiation Profiling of Marrow Stem Cells: A Megakaryocytic Hotspot and the Continuum Model of Hematopoiesis. Blood, 2008, 112, 4776-4776.	1.4	1
33	Differentiation Hotspots on a Cell Cycle Related Continuum Blood, 2007, 110, 3703-3703.	1.4	0
34	Stem cells and the lung. FASEB Journal, 2009, 23, 186.2.	0.5	0
35	The Paradoxical Dynamism of Marrow Stem Cells. FASEB Journal, 2009, 23, 186.1.	0.5	0
36	Bone Marrow Transplant Induces Pulmonary Vascular Remodeling in Mice Blood, 2009, 114, 4480-4480.	1.4	0

#	Article	IF	CITATIONS
37	Adhesion Protein Profile of Lung-Derived Microvesicles. Blood, 2010, 116, 4803-4803.	1.4	O
38	Lung-Derived Microvesicles Induce Stable Long-Term Epigenetic Changes In Marrow Cells. Blood, 2010, 116, 4799-4799.	1.4	0
39	Transfer of Monocrotaline-Induced Pulmonary Hypertension to Healthy Mice Via Microparticles. Blood, 2012, 120, 5190-5190.	1.4	O
40	Cycling Marrow Stem Cells Are Lost with Purification Blood, 2012, 120, 2308-2308.	1.4	0
41	Intercellular Communication Between Extracellular Vesicles and Murine Marrow Cells Is Influenced By Circadian Rhythm. Blood, 2014, 124, 2924-2924.	1.4	O
42	Defining Engraftment Potential within the Lineage Positive Population in Murine Marrow. Blood, 2014, 124, 4303-4303.	1.4	0
43	Hematopoietic Stem Cell Purification Leads to Loss of a Stem Cell Population within the Lineage Positive Cellular Fraction. Blood, 2015, 126, 4756-4756.	1.4	0
44	Biological Effects of Different Extracellular Vesicles Population on Reversal of Marrow Cells Radiation Damage. Blood, 2015, 126, 3598-3598.	1.4	0