Martino Di Serio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9331038/publications.pdf Version: 2024-02-01

		71061	79644
221	7,141	41	73
papers	citations	h-index	g-index
225	225	225	6159
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Heterogeneous Catalysts for Biodiesel Production. Energy & Fuels, 2008, 22, 207-217.	2.5	678
2	Transesterification of Soybean Oil to Biodiesel by Using Heterogeneous Basic Catalysts. Industrial & Engineering Chemistry Research, 2006, 45, 3009-3014.	1.8	378
3	Synthesis of biodiesel via homogeneous Lewis acid catalyst. Journal of Molecular Catalysis A, 2005, 239, 111-115.	4.8	208
4	Chemical and Technical Aspects of Propene Oxide Production via Hydrogen Peroxide (HPPO Process). Industrial & Engineering Chemistry Research, 2013, 52, 1168-1178.	1.8	204
5	Kinetics of Oleic Acid Esterification with Methanol in the Presence of Triglycerides. Industrial & Engineering Chemistry Research, 2005, 44, 7978-7982.	1.8	175
6	Main technologies in biodiesel production: State of the art and future challenges. Catalysis Today, 2012, 195, 2-13.	2.2	154
7	From Homogeneous to Heterogeneous Catalysts in Biodiesel Production. Industrial & Engineering Chemistry Research, 2007, 46, 6379-6384.	1.8	151
8	Ethanol dehydrogenation to ethyl acetate by using copper and copper chromite catalysts. Chemical Engineering Journal, 2012, 179, 209-220.	6.6	149
9	New Process for Producing Epichlorohydrin via Glycerol Chlorination. Industrial & Engineering Chemistry Research, 2010, 49, 964-970.	1.8	122
10	A biphasic model describing soybean oil epoxidation with H2O2 in a fed-batch reactor. Chemical Engineering Journal, 2011, 173, 198-209.	6.6	118
11	Vanadyl phosphate catalysts in biodiesel production. Applied Catalysis A: General, 2007, 320, 1-7.	2.2	109
12	Kinetics and modeling of fatty acids esterification on acid exchange resins. Chemical Engineering Journal, 2010, 157, 539-550.	6.6	98
13	Study of the surface acidity of TiO2/SiO2 catalysts by means of FTIR measurements of CO and NH3 adsorption. Journal of Catalysis, 2007, 246, 293-300.	3.1	88
14	Applications of Metal Organic Frameworks in Wastewater Treatment: A Review on Adsorption and Photodegradation. Frontiers in Chemical Engineering, 2020, 2, .	1.3	83
15	Kinetic and catalytic aspects in the hydrogen peroxide production via anthraquinone. Chemical Engineering Science, 1999, 54, 2799-2806.	1.9	82
16	Kinetics, Mass Transfer, and Palladium Catalyst Deactivation in the Hydrogenation Step of the Hydrogen Peroxide Synthesis via Anthraquinone. Industrial & Engineering Chemistry Research, 1994, 33, 277-284.	1.8	75
17	Grafting of titanium alkoxides on high-surface SiO2 support: An advanced technique for the preparation of nanostructured TiO2/SiO2 catalysts. Applied Catalysis A: General, 2007, 325, 256-262.	2.2	74
18	Synthesis of High Surface Area Phosphosilicate Glasses by a Modified Solâ^'Gel Method. Chemistry of Materials, 2005, 17, 2081-2090.	3.2	73

#	Article	IF	CITATIONS
19	New Process for the Production of Glycerol <i>tert</i> Butyl Ethers. Energy & Fuels, 2010, 24, 4668-4672.	2.5	69
20	Kinetics of free fatty acids esterification: Batch and loop reactor modeling. Chemical Engineering Journal, 2009, 154, 25-33.	6.6	66
21	Poly (Lactic Acid)/Thermoplastic Starch Films: Effect of Cardoon Seed Epoxidized Oil on Their Chemicophysical, Mechanical, and Barrier Properties. Coatings, 2019, 9, 574.	1.2	64
22	In vivo and Post-synthesis Strategies to Enhance the Properties of PHB-Based Materials: A Review. Frontiers in Bioengineering and Biotechnology, 2020, 8, 619266.	2.0	61
23	Design of an adsorption column for methylene blue abatement over silica: From batch to continuous modeling. Chemical Engineering Journal, 2016, 302, 287-295.	6.6	60
24	Biphasic Model Describing Soybean Oil Epoxidation with H ₂ O ₂ in Continuous Reactors. Industrial & Engineering Chemistry Research, 2012, 51, 8760-8767.	1.8	59
25	Oxidative Cleavage of the Double Bond of Monoenic Fatty Chains in Two Steps:Â A New Promising Route to Azelaic Acid and Other Industrial Products. Industrial & Engineering Chemistry Research, 2000, 39, 2766-2771.	1.8	57
26	Catalytic alkylation of phenol with methanol: factors influencing activities and selectivities. Applied Catalysis, 1990, 64, 101-117.	1.1	55
27	Kinetics of Glycerol Chlorination with Hydrochloric Acid:  A New Route to α,γ-Dichlorohydrin. Industrial & Engineering Chemistry Research, 2007, 46, 6456-6465.	1.8	55
28	Transfer of the Epoxidation of Soybean Oil from Batch to Flow Chemistry Guided by Cost and Environmental Issues. ChemSusChem, 2012, 5, 300-311.	3.6	55
29	Mg/Al hydrotalcite catalyst for biodiesel production in continuous packed bed reactors. Catalysis Today, 2012, 195, 54-58.	2.2	54
30	Kinetic study of ethanol dehydrogenation to ethyl acetate promoted by a copper/copper-chromite based catalyst. Catalysis Today, 2013, 203, 202-210.	2.2	54
31	Biodiesel process intensification in a very simple microchannel device. Chemical Engineering and Processing: Process Intensification, 2012, 52, 47-54.	1.8	53
32	Lactose hydrolysis by immobilized β-galactosidase: the effect of the supports and the kinetics. Catalysis Today, 2003, 79-80, 333-339.	2.2	52
33	Valuation of Nb2O5–SiO2 catalysts in soybean oil epoxidation. Catalysis Today, 2012, 192, 112-116.	2.2	51
34	Preparation and properties of new acid catalysts obtained by grafting alkoxides and derivatives on the most common supports note I — grafting aluminium and zirconium alkoxides and related sulphates on silica. Applied Catalysis A: General, 1998, 167, 85-101.	2.2	49
35	Vanadium based catalysts prepared by grafting: preparation, properties and performances in the ODH of butane. Applied Catalysis A: General, 2004, 270, 177-192.	2.2	48
36	Thermal risk in semi-batch reactors: The epoxidation of soybean oil. Chemical Engineering Research and Design, 2017, 109, 529-537.	2.7	47

#	Article	IF	CITATIONS
37	Kinetics of Propene Oxide Production via Hydrogen Peroxide with TS-1. Industrial & Engineering Chemistry Research, 2014, 53, 6274-6287.	1.8	45
38	Kinetics of the Oxidative Dehydrogenation of Ethanol to Acetaldehyde on V2O5/TiO2â^'SiO2 Catalysts Prepared by Grafting. Industrial & Engineering Chemistry Research, 2004, 43, 1623-1633.	1.8	43
39	Heterogeneous Catalysis in Biodiesel Production: The Influence of Leaching. Topics in Catalysis, 2010, 53, 811-819.	1.3	43
40	Sustainable Process for Production of Azelaic Acid Through Oxidative Cleavage of Oleic Acid. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 1701-1707.	0.8	43
41	Coking of Catalysts in Catalytic Glycerol Dehydration to Acrolein. Industrial & Engineering Chemistry Research, 2018, 57, 10736-10753.	1.8	43
42	Kinetics and mechanisms of fatty alcohol polyethoxylation. 1. The reaction catalyzed by potassium hydroxide. Industrial & Engineering Chemistry Research, 1992, 31, 2413-2418.	1.8	41
43	Role of mass transfer and kinetics in the hydrogenation of rapeseed oil on a supported palladium catalyst. Applied Catalysis A: General, 1994, 116, 269-294.	2.2	41
44	Mass Transfer and Kinetics in Spray-Tower-Loop Absorbers and Reactors. Industrial & Engineering Chemistry Research, 2000, 39, 4082-4093.	1.8	41
45	Acid exchange resins deactivation in the esterification of free fatty acids. Chemical Engineering Journal, 2010, 161, 212-222.	6.6	41
46	Kinetics and Mass Transfer of Free Fatty Acids Esterification with Methanol in a Tubular Packed Bed Reactor:  A Key Pretreatment in Biodiesel Production. Industrial & Engineering Chemistry Research, 2007, 46, 5113-5121.	1.8	40
47	Kinetics of Performic Acid Synthesis and Decomposition. Industrial & Engineering Chemistry Research, 2017, 56, 12940-12952.	1.8	40
48	Mass transfer and kinetics in ehtoxylation spray tower loop reactors. Chemical Engineering Science, 1999, 54, 1499-1504.	1.9	39
49	Mechanism of Silver-Promoted Ligand Metathesis in Square-Planar Complexes of dolons. Kinetics of Formation and Molecular Structures of a Trinuclear Intermediate [(Me)(Nâ ^{~^} N)Pt(μ-Cl)Ag(μ-Cl)Pt(Nâ ^{~^} N)(Me)]+and Its Dinuclear Evolution Product [(Me)(Nâ ^{~^} N)Pt(μ-Cl)Pt(Nâ ^{~^} N)(Me)]+(Nâ ^{~^} N = ArNC(Me)C(Me)NAr, Ar = 2,6-(i-Pr)2C6H3). Inorganic Chemistry,	1.9	39
50	Oxidative dehydrogenation of ethanol to acetaldehyde on V2O5/TiO2-SiO2 catalysts obtained by grafting vanadium and titanium alkoxides on silica. Journal of Molecular Catalysis A, 2003, 204-205, 617-627.	4.8	39
51	Influence of preparation methods and structure of niobium oxide-based catalysts in the epoxidation reaction. Catalysis Today, 2015, 254, 99-103.	2.2	39
52	Oxidative dehydrogenation of propane using V2O5/TiO2/SiO2 catalysts prepared by grafting titanium and vanadium alkoxides on silica. Journal of Molecular Catalysis A, 2003, 198, 151-165.	4.8	38
53	Hydrogenation of the aromatic rings of 2-ethylanthraquinone on palladium catalyst. Journal of Molecular Catalysis, 1994, 94, 37-46.	1.2	37
54	Zirconocene-Based Catalysts for the Ethyleneâ [^] Styrene Copolymerization:Â Reactivity Ratios and Reaction Mechanism. Macromolecules, 1997, 30, 5616-5619.	2.2	37

#	Article	IF	CITATIONS
55	Gel derived niobium–silicon mixed oxides: Characterization and catalytic activity for cyclooctene epoxidation. Applied Catalysis A: General, 2008, 347, 179-185.	2.2	37
56	Cleaner hydrothermal hydrogenolysis of glycerol to 1,2-propanediol over Cu/oxide catalysts without addition of external hydrogen. Molecular Catalysis, 2017, 432, 274-284.	1.0	37
57	Synthesis and characterization of sustainable polyurethane foams based on polyhydroxyls with different terminal groups. Polymer, 2018, 149, 134-145.	1.8	37
58	Ethylene Oxide Solubility and Ethoxylation Kinetics in the Synthesis of Nonionic Surfactants. Industrial & Engineering Chemistry Research, 1995, 34, 4092-4098.	1.8	36
59	Preparation and properties of new acid catalysts obtained by grafting alkoxides and derivatives on the most common supports. Part III – grafting titanium alkoxides and sulphate derivatives on silica. Applied Catalysis A: General, 1999, 178, 97-109.	2.2	36
60	Double bond oxidative cleavage of monoenic fatty chains. Catalysis Today, 2003, 79-80, 59-65.	2.2	36
61	Fluidâ€Solid Adsorption in Batch and Continuous Processing: A Review and Insights into Modeling. Chemical Engineering and Technology, 2017, 40, 799-820.	0.9	36
62	<i>Cynara cardunculus</i> Biomass Recovery: An Eco-Sustainable, Nonedible Resource of Vegetable Oil for the Production of Poly(lactic acid) Bioplasticizers. ACS Sustainable Chemistry and Engineering, 2019, 7, 4069-4077.	3.2	36
63	Comparison of Different Reactor Types Used in the Manufacture of Ethoxylated, Propoxylated Products. Industrial & Engineering Chemistry Research, 2005, 44, 9482-9489.	1.8	35
64	A dynamic intraparticle model for fluid–solid adsorption kinetics. Computers and Chemical Engineering, 2015, 74, 66-74.	2.0	35
65	Kinetics of nonylphenol polyethoxylation catalyzed by potassium hydroxide. Industrial & Engineering Chemistry Research, 1990, 29, 719-725.	1.8	34
66	A kinetic and mass transfer model to simulate the growth of baker's yeast in industrial bioreactors. Chemical Engineering Journal, 2001, 82, 347-354.	6.6	34
67	Oxidative dehydrogenation of isobutane over V2O5-based catalysts prepared by grafting vanadyl alkoxides on TiO2_SiO2 supports. Applied Catalysis A: General, 2003, 246, 49-68.	2.2	33
68	Synthesis of Biolubricant Basestocks from Epoxidized Soybean Oil. Catalysts, 2017, 7, 309.	1.6	32
69	Modeling of polyurethane foam formation. Journal of Applied Polymer Science, 2004, 92, 1875-1886.	1.3	31
70	Heterogeneous basic catalysts for the transesterification and the polycondensation reactions in PET production from DMT. Journal of Molecular Catalysis A, 2004, 212, 251-257.	4.8	31
71	Chemical and Technical Aspects of the Synthesis of Chlorohydrins from Glycerol. Industrial & Engineering Chemistry Research, 2014, 53, 8939-8962.	1.8	31
72	New findings on soybean and methylester epoxidation with alumina as the catalyst. RSC Advances, 2016, 6, 31647-31652.	1.7	31

#	Article	IF	CITATIONS
73	Liquid–Liquid–Solid Model for the Epoxidation of Soybean Oil Catalyzed by Amberlyst-16. Industrial & Engineering Chemistry Research, 2017, 56, 12963-12971.	1.8	31
74	Self-Activating Catalyst for Glucose Hydrogenation in the Aqueous Phase under Mild Conditions. ACS Catalysis, 2019, 9, 3426-3436.	5.5	31
75	Preparation and properties of new acid catalysts obtained by grafting alkoxides and derivatives on the most common supports. Part II: Grafting zirconium and silicon alkoxides on γ-alumina. Applied Catalysis A: General, 1998, 170, 225-244.	2.2	30
76	Kinetics of Ethoxylation and Propoxylation of Ethylene Glycol Catalyzed by KOH. Industrial & Engineering Chemistry Research, 2002, 41, 5196-5206.	1.8	30
77	A simple device to test biodiesel process intensification. Chemical Engineering and Processing: Process Intensification, 2011, 50, 1085-1094.	1.8	30
78	Kinetic study of Amberlite IR120 catalyzed acid esterification of levulinic acid with ethanol: From batch to continuous operation. Chemical Engineering Journal, 2020, 401, 126126.	6.6	30
79	Kinetics of Ethoxylation and Propoxylation of 1- and 2-Octanol Catalyzed by KOH. Industrial & Engineering Chemistry Research, 1996, 35, 3848-3853.	1.8	29
80	Methanol steam reforming: A comparison of different kinetics in the simulation of a packed bed reactor. Chemical Engineering Journal, 2009, 154, 69-75.	6.6	29
81	Synthesis of Monoalkyl Clyceryl Ethers by Ring Opening of Clycidol with Alcohols in the Presence of Lewis Acids. ChemSusChem, 2016, 9, 3272-3275.	3.6	28
82	Intraparticle diffusion model to determine the intrinsic kinetics of ethyl levulinate synthesis promoted by Amberlyst-15. Chemical Engineering Science, 2020, 228, 115974.	1.9	28
83	Glycerol Chlorination in Gas–Liquid Semibatch Reactor: An Alternative Route for Chlorohydrins Production. Industrial & Engineering Chemistry Research, 2012, 51, 8768-8776.	1.8	27
84	Enhanced performances of grafted VOx on titania/silica for the selective photocatalytic oxidation of ethanol to acetaldehyde. Catalysis Today, 2013, 209, 159-163.	2.2	27
85	Comparison of Different Reactor Configurations for the Reduction of Free Acidity in Raw Materials for Biodiesel Production. Industrial & Engineering Chemistry Research, 2007, 46, 8355-8362.	1.8	26
86	Biodiesel Process Intensification by Using Static Mixers Tubular Reactors. Industrial & Engineering Chemistry Research, 2012, 51, 8777-8787.	1.8	26
87	Modeling of microreactors for ethylene epoxidation and total oxidation. Chemical Engineering Science, 2015, 134, 563-571.	1.9	26
88	A novel and robust homogeneous supported catalyst for biodiesel production. Fuel, 2016, 171, 1-4.	3.4	26
89	Kinetic and catalytic aspects of the formation of poly(ethylene terephthalate) (PET) investigated with model molecules. Journal of Applied Polymer Science, 1998, 69, 2423-2433.	1.3	25
90	Kinetic and catalytic aspects in melt transesterification of dimethyl terephthalate with ethylene glycol. Journal of Applied Polymer Science, 1994, 54, 1371-1384.	1.3	24

#	Article	IF	CITATIONS
91	Dynamic non-isothermal trickle bed reactor with both internal diffusion and heat conduction: Sugar hydrogenation as a case study. Chemical Engineering Research and Design, 2015, 102, 171-185.	2.7	24
92	Catalytic glycerol dehydration-oxidation to acrylic acid. Catalysis Reviews - Science and Engineering, 2020, 62, 481-523.	5.7	24
93	Properties of Ethoxylated Castor Oil Acid Methyl Esters Prepared by Ethoxylation over an Alkaline Catalyst. Journal of Surfactants and Detergents, 2015, 18, 365-370.	1.0	23
94	Selective Epoxidation of Soybean Oil in the Presence of H–Y Zeolite. Industrial & Engineering Chemistry Research, 2017, 56, 7930-7936.	1.8	23
95	A Sustainable Process for the Production of Varnishes Based on Pelargonic Acid Esters. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 443-451.	0.8	23
96	Quantification of Polyphenols and Metals in Chinese Tea Infusions by Mass Spectrometry. Foods, 2020, 9, 835.	1.9	23
97	Absorption of water/methanol binary system on ionâ€exchange resins. Canadian Journal of Chemical Engineering, 2010, 88, 1044-1053.	0.9	22
98	Homogeneous Catalysis and Heterogeneous Recycling: A Simple Zn(II) Catalyst for Green Fatty Acid Esterification. ACS Sustainable Chemistry and Engineering, 2021, 9, 6001-6011.	3.2	21
99	Epoxidation of Linseed Oil by Performic Acid Produced In Situ. Industrial & Engineering Chemistry Research, 2021, 60, 16607-16618.	1.8	21
100	Ethoxylation of fatty alcohols promoted by an aluminum alkoxide sulphate catalyst. Journal of Molecular Catalysis A, 1996, 112, 235-251.	4.8	20
101	Emerging Risks in the Biodiesel Production by Transesterification of Virgin and Renewable Oils. Energy & Fuels, 2010, 24, 6103-6109.	2.5	20
102	Shiff base complexes of zinc(II) as catalysts for biodiesel production. Journal of Molecular Catalysis A, 2012, 353-354, 106-110.	4.8	20
103	Efficient and selective conversion of glycidol to 1,2-propanediol over Pd/C catalyst. Catalysis Communications, 2016, 77, 98-102.	1.6	20
104	Further verification of adsorption dynamic intraparticle model (ADIM) for fluid–solid adsorption kinetics in batch reactors. Chemical Engineering Journal, 2016, 283, 1197-1202.	6.6	20
105	Niobium Based Catalysts for Methyl Oleate Epoxidation Reaction. Topics in Catalysis, 2017, 60, 1054-1061.	1.3	20
106	An Environmentally Friendly Nb–P–Si Solid Catalyst for Acid-Demanding Reactions. Journal of Physical Chemistry C, 2017, 121, 17378-17389.	1.5	20
107	Soybean Oil Epoxidation: Kinetics of the Epoxide Ring Opening Reactions. Processes, 2020, 8, 1134.	1.3	20
108	Kinetics and mechanisms of fatty alcohol polyethoxylation. 2. Narrow-range ethoxylation obtained with barium catalysts. Industrial & Engineering Chemistry Research, 1992, 31, 2419-2421.	1.8	19

#	Article	IF	CITATIONS
109	A New Simple Microchannel Device To Test Process Intensification. Industrial & Engineering Chemistry Research, 2011, 50, 2569-2575.	1.8	19
110	A Sol–Gel Ruthenium–Niobium–Silicon Mixedâ€Oxide Bifunctional Catalyst for the Hydrogenation of Levulinic Acid in the Aqueous Phase. ChemCatChem, 2017, 9, 1476-1486.	1.8	19
111	Continuous Liquid-Phase Epoxidation of Ethylene with Hydrogen Peroxide on a Titanium-Silicate Catalyst. Industrial & Engineering Chemistry Research, 2021, 60, 9429-9436.	1.8	19
112	Kinetics of Fatty Acids Polyethoxylation. Industrial & Engineering Chemistry Research, 1994, 33, 509-514.	1.8	18
113	Catalysis for esterification reactions: a key step in the biodiesel production from waste oils. Rendiconti Lincei, 2017, 28, 117-123.	1.0	18
114	Kinetics and Modelling of Levulinic Acid Esterification in Batch and Continuous Reactors. Topics in Catalysis, 2018, 61, 1856-1865.	1.3	18
115	Bio-lubricants synthesis from the epoxidized oil promoted by clays: Kinetic modelling. Chemical Engineering Science, 2020, 214, 115445.	1.9	18
116	Biocomposites based on Poly(lactic acid), Cynara Cardunculus seed oil and fibrous presscake: a novel eco-friendly approach to hasten PLA biodegradation in common soil. Polymer Degradation and Stability, 2021, 188, 109576.	2.7	18
117	Kinetics of the oxidative dehydrogenation (ODH) of methanol to formaldehyde by supported vanadium-based nanocatalysts. Catalysis Today, 2007, 128, 191-200.	2.2	17
118	Investigation of the intrinsic reaction kinetics and the mass transfer phenomena of nonanoic acid esterification with 2-ethylhexanol promoted by sulfuric acid or Amberlite IR120. Chemical Engineering Journal, 2021, 408, 127236.	6.6	17
119	Catalytic oxidation of methanol to formaldehyde: an example of kinetics with transport phenomena in a packed-bed reactor. Catalysis Today, 2003, 77, 325-333.	2.2	16
120	Strategies for immobilizing homogeneous zinc catalysts in biodiesel production. Catalysis Communications, 2014, 56, 81-85.	1.6	16
121	Glycerol chlorination in a gas-liquid semibatch reactor: New catalysts for chlorohydrin production. Chinese Journal of Catalysis, 2014, 35, 663-669.	6.9	16
122	Kinetics of Soybean Oil Epoxidation in a Semibatch Reactor. Industrial & Engineering Chemistry Research, 2020, 59, 21700-21711.	1.8	16
123	Thermal stability of nonionic polyoxyalkylene surfactants. Journal of Applied Polymer Science, 1991, 42, 2053-2061.	1.3	15
124	Kinetic and catalytic aspects in melt transesterification of dimethyl terephthalate with ethylene glycol in the presence of different catalytic systems. Journal of Applied Polymer Science, 1996, 62, 409-415.	1.3	15
125	Description of the vapor–liquid equilibrium in binary refrigerant/lubricating oil systems by means of an extended Flory–Huggins model. Journal of Fluorine Chemistry, 1999, 99, 29-36.	0.9	15
126	A predictive model for the diffusion of a highly non-ideal ternary system. Physical Chemistry Chemical Physics, 2018, 20, 18436-18446.	1.3	15

#	Article	IF	CITATIONS
127	Kinetic Modeling of Solketal Synthesis from Glycerol and Acetone Catalyzed by an Iron(III) Complex. Catalysts, 2021, 11, 83.	1.6	15
128	Oxidized glucosidic oligomers: a new class of sequestering agents — preparation and properties. Carbohydrate Polymers, 1994, 23, 35-46.	5.1	14
129	A Rapid Method for the Evaluation of the Dispersion of Palladium in Supported Catalysts. Journal of Catalysis, 1997, 172, 485-487.	3.1	14
130	Selective epoxidation of soybean oil with performic acid catalyzed by acidic ionic exchange resins. Green Processing and Synthesis, 2013, 2, .	1.3	14
131	Kinetics of chloroform fluorination by HF catalyzed by antimony pentachloride. Journal of Fluorine Chemistry, 1989, 44, 87-111.	0.9	13
132	Bioethanol as feedstock for chemicals such as acetaldehyde, ethyl acetate and pure hydrogen. Biomass Conversion and Biorefinery, 2013, 3, 55-67.	2.9	13
133	Role of ethylene oxide solubility in the ethoxylation processes. Catalysis Today, 1995, 24, 23-28.	2.2	12
134	Preparation, characterization and catalytic performances of highly dispersed supported TiO2/SiO2 catalysts in biodiesel production. Studies in Surface Science and Catalysis, 2006, , 299-306.	1.5	12
135	Use of a Corrugated Plates Heat Exchanger Reactor for Obtaining Biodiesel with Very High Productivity. Energy & Fuels, 2009, 23, 5206-5212.	2.5	12
136	Catalysts for the Ethoxylation of Esters. Journal of Surfactants and Detergents, 2015, 18, 913-918.	1.0	12
137	Synthesis, Surface Properties, and Selfâ€Aggregation Behavior of a Branched <i>N</i> , <i>N</i> êĐimethylalkylamine Oxide Surfactant. Journal of Surfactants and Detergents, 2019, 22, 115-124.	1.0	12
138	Nonanoic acid esterification with 2-ethylhexanol: From batch to continuous operation. Chemical Engineering Journal, 2022, 444, 136572.	6.6	12
139	A general kinetic and mass transfer model to simulate the baker's yeast growth in bioreactors. Catalysis Today, 2001, 66, 437-445.	2.2	11
140	Characterization of sustainable polyhydroxyls, produced from bio-based feedstock, and polyurethane and copolymer urethane-amide foams. Data in Brief, 2018, 21, 269-275.	0.5	11
141	Modelling of homogeneously catalyzed hemicelluloses hydrolysis in a laminar-flow reactor. Chemical Engineering Science, 2019, 195, 758-766.	1.9	11
142	Active and stable ceria-zirconia supported molybdenum oxide catalysts for cyclooctene epoxidation: Effect of the preparation procedure. Catalysis Today, 2020, 345, 201-212.	2.2	11
143	The role of metallic and acid sites of Ru-Nb-Si catalysts in the transformation of levulinic acid to γ-valerolactone. Applied Catalysis B: Environmental, 2022, 310, 121340.	10.8	11
144	Quantitative Analysis of the Key Factors Affecting Yeast Growth. Industrial & Engineering Chemistry Research, 2003, 42, 5109-5116.	1.8	10

#	Article	IF	CITATIONS
145	Chromatographic reactor modelling. Chemical Engineering Journal, 2019, 377, 119692.	6.6	10
146	Kinetics of methanol homologation. Journal of Molecular Catalysis, 1990, 58, 27-42.	1.2	9
147	A critical review on analytical methods and characterization of butyl and bromobutyl rubber. International Journal of Polymer Analysis and Characterization, 2017, 22, 348-360.	0.9	9
148	Polyethoxylation and polypropoxylation reactions: Kinetics, mass transfer and industrial reactor design. Chinese Journal of Chemical Engineering, 2018, 26, 1235-1251.	1.7	9
149	Stepwise coordination isomerism of 2D networks: adsorption of diiodomethane into crystals and recognition in SCSC mode. Inorganic Chemistry Frontiers, 2021, 8, 3292-3300.	3.0	9
150	Kinetic and catalytic aspects of dimethylterephtalate transesterification also through the use of model molecules. Journal of Molecular Catalysis A, 1998, 130, 233-240.	4.8	8
151	Vapour–liquid equilibrium measurements for binary mixtures of R32, R143a, R134a and R125 with a perfluoropolyether lubricant. Journal of Fluorine Chemistry, 2003, 121, 15-22.	0.9	8
152	Niobia supported on silica as a catalyst for Biodiesel production from waste oil. Catalysis for Sustainable Energy, 2015, 2, 33-42.	0.7	8
153	New Production Processes of Dichlorohydrins from Glycerol Using Acyl Chlorides as Catalysts or Reactants. Industrial & Engineering Chemistry Research, 2016, 55, 1484-1490.	1.8	8
154	Hydrophobically Modified Alkali Soluble Emulsion Polymers: Literature Review. Journal of Surfactants and Detergents, 2020, 23, 5-19.	1.0	8
155	Examples of hydrogenation in semibatch and continuous slurry reactors. Catalysis Today, 1999, 52, 363-376.	2.2	7
156	Synthesis and purification of anthraquinone in a multifunctional reactor. Catalysis Today, 2001, 66, 167-174.	2.2	7
157	Heterogeneous catalysts for the production of anthraquinone from 2-benzoylbenzoic acid. Chemical Engineering Journal, 2002, 90, 195-201.	6.6	7
158	Phase Equilibria in Binary Mixtures Refrigerant + Fluorinated Lubricating Oil:  Vaporâ^'Liquid and Liquidâ^'Liquid Measurements. Journal of Chemical & Engineering Data, 2004, 49, 838-846.	1.0	7
159	Gasâ^'Liquid and Gasâ^'Liquidâ^'Solid Reactions Performed in Spray Tower Loop Reactors. Industrial & Engineering Chemistry Research, 2005, 44, 9461-9472.	1.8	7
160	Validation of the Kinetics of the Hydrogen Peroxide Propene Oxide Process in a Dynamic Continuous Stirred Tank Reactor. Industrial & Engineering Chemistry Research, 2018, 57, 16201-16208.	1.8	7
161	High purity fructose from inulin with heterogeneous catalysis–Âfrom batch to continuous operation. Journal of Chemical Technology and Biotechnology, 2019, 94, 418-425.	1.6	7
162	Falling film reactor modelling for sulfonation reactions. Chemical Engineering Journal, 2019, 377, 120464.	6.6	7

#	Article	IF	CITATIONS
163	Production of Sustainable Biochemicals by Means of Esterification Reaction and Heterogeneous Acid Catalysts. ChemEngineering, 2021, 5, 46.	1.0	7
164	Erratum to â€~Hydrogenation of the aromatic rings of 2-ethylanthraquinone on palladium catalyst' [J. Mol. Catal. 94 (1994) 37]. Journal of Molecular Catalysis A, 1995, 99, 151.	4.8	6
165	Kinetic and mass transfer in the hydrogenation of polyunsaturated organic compounds in the presence of supported Pd catalysts. Catalysis Today, 2001, 66, 403-410.	2.2	6
166	Parallel Reactor Activity Studies of the Preferential Oxidation of CO on Transition Metals Supported on TiO2 and TiO2 Nanotubes. Catalysis Letters, 2009, 130, 19-27.	1.4	6
167	Micellar Properties for Propoxylated Surfactants in Water/Alcohol Solvent Mixtures and Their Antibacterial and Polyester Fabric Antistatic Performances. Journal of Surfactants and Detergents, 2016, 19, 543-552.	1.0	6
168	On the Importance of Choosing the Best Minimization Algorithm for the Determination of Ternary Diffusion Coefficients by the Taylor Dispersion Method. ACS Omega, 2017, 2, 2945-2952.	1.6	6
169	Comparison of Different Possible Technologies for Epoxidation of <i>Cynara cardunculus</i> Seed Oil. European Journal of Lipid Science and Technology, 2020, 122, 1900100.	1.0	6
170	Sustainable Synthesis of Epoxidized Cynara C. Seed Oil. Catalysts, 2020, 10, 721.	1.6	6
171	Synthesis and Properties of Primary Alcohol Ethoxylates Using Different Catalytic Systems. ACS Omega, 2021, 6, 29774-29780.	1.6	6
172	Kinetics of methanol homologation. Journal of Molecular Catalysis, 1990, 58, 43-52.	1.2	5
173	Chain propagation rate constants for gas-phase polymerization of propene and 1-butene with Ziegler-Natta catalysts. Macromolecular Chemistry and Physics, 1994, 195, 211-216.	1.1	5
174	Description of the liquid–liquid equilibrium in binary and multicomponent CFC/lubricating oil mixtures by means of an extended Flory–Huggins model. Journal of Fluorine Chemistry, 2000, 103, 41-51.	0.9	5
175	Influence of the vapor–liquid equilibria (VLE) on the kinetics in gas–liquid and gas–liquid–solid systems. Catalysis Today, 2003, 79-80, 323-331.	2.2	5
176	Bio-based polyurethane foams from renewable resources. AIP Conference Proceedings, 2016, , .	0.3	5
177	Loop reactor modeling for lubricants synthesis. Chemical Engineering Journal, 2017, 329, 295-304.	6.6	5
178	Synthesis and properties of α-sulfo carboxyl disodium salt. Journal of Dispersion Science and Technology, 2018, 39, 1360-1366.	1.3	5
179	Intraparticle Modeling of Non-Uniform Active Phase Distribution Catalyst. ChemEngineering, 2020, 4, 24.	1.0	5
180	Modelling of transient kinetics in trickle bed reactors: Ethylene oxide production via hydrogen peroxide. Chemical Engineering Science, 2021, 248, 117156.	1.9	5

#	Article	IF	CITATIONS
181	Synthesis and Properties of 9,10-Dihydroxystearic Acid Ethoxylate. Tenside, Surfactants, Detergents, 2019, 56, 237-243.	0.5	5
182	Hydroformylation of polyisobutene. Journal of Molecular Catalysis, 1991, 69, 1-14.	1.2	4
183	An application of the UNIFAC-RKS method to a reactive system. Fluid Phase Equilibria, 1993, 84, 111-122.	1.4	4
184	Narrow-range ethoxylation of fatty alcohols promoted by a zirconium alkoxide sulfate catalyst. Journal of Surfactants and Detergents, 1998, 1, 83-91.	1.0	4
185	Aluminium alkoxide sulphate catalyst: a computational study. Journal of Molecular Catalysis A, 1999, 137, 169-182.	4.8	4
186	Supports and catalysts preparation by using metal alkoxides grafting technique. Studies in Surface Science and Catalysis, 2000, 143, 77-87.	1.5	4
187	Comparison between the Performances of a Well-Stirred Slurry Reactor and a Spray Loop Reactor for the Alkylation ofp-Cresol with Isobutene. Industrial & Engineering Chemistry Research, 2005, 44, 9473-9481.	1.8	4
188	Supported vanadium oxide nanoparticles: effect of preparation method, support and type of precursor on the catalytic performances in the ODH of methanol to formaldehyde. Studies in Surface Science and Catalysis, 2006, , 697-704.	1.5	4
189	The role of recirculation loop on the risk of ethoxylation processes. Journal of Loss Prevention in the Process Industries, 2007, 20, 238-250.	1.7	4
190	Biodiesel process intensification: the role of the liquid-liquid interface area in the achievement of a complete conversion in few seconds. Green Processing and Synthesis, 2012, 1, .	1.3	4
191	Influence of sulfonic acid group on the performance of castor oil acid based methyl ester ethoxylate sulfonate. Journal of Dispersion Science and Technology, 2018, 39, 1693-1698.	1.3	4
192	Synthesis and properties of dihydroxyoleic acid methyl ester ethoxylates. Journal of Dispersion Science and Technology, 2019, 40, 1272-1279.	1.3	4
193	Oleochemistry Products. , 2020, , 201-268.		4
194	Lactic Acid-Based Solvents for Sustainable EDLC Electrolytes. Energies, 2021, 14, 4250.	1.6	4
195	Reactive Chromatography Applied to Ethyl Levulinate Synthesis: A Proof of Concept. Processes, 2021, 9, 1684.	1.3	4
196	Simple and predictive approach for calculating the high pressure and temperature vapour—liquid equilibria of binary mixtures by applying a UNIFAC equation of state method. Fluid Phase Equilibria, 1991, 63, 329-340.	1.4	3
197	The evaluation of risks of ethoxylation reactors. Process Safety Progress, 2007, 26, 304-311.	0.4	3
198	Concentration-induced micelle-to-vesicle transitions in aqueous sodium ricinate branched polyoxyethylene ether solutions. Journal of Dispersion Science and Technology, 2021, 42, 1099-1105.	1.3	3

#	Article	IF	CITATIONS
199	The Evolution of the Fed Batch Ethoxylation Reactors to Produce the Non-Ionic Surfactants. Frontiers in Chemical Engineering, 2021, 3, .	1.3	3
200	Solvent-free direct esterification of acrylic acid with 2-ethylhexyl alcohol using simple Zn(II) catalysts. Inorganica Chimica Acta, 2022, 534, 120821.	1.2	3
201	Physicochemical and application properties of C13-branched alcohol ethoxylates (BAEO) with different ethylene oxide addition numbers. Journal of Molecular Liquids, 2022, 355, 118985.	2.3	3
202	1H NMR-based analytical method: A valid and rapid tool for the epoxidation processes. Industrial Crops and Products, 2022, 186, 115258.	2.5	3
203	Isobaric vapour-liquid equilibria for some halogen-containing ethanes in binary mixtures with HF. Journal of Fluorine Chemistry, 1993, 61, 123-131.	0.9	2
204	Kinetics and reactor simulation for polyethoxylation and polypropoxylation reactions. Studies in Surface Science and Catalysis, 1999, , 267-274.	1.5	2
205	Advantages in the Use of Membrane Contactors for the Study of Gasâ^'Liquid and Gasâ^'Liquidâ^'Solid Reactions. Industrial & Engineering Chemistry Research, 2005, 44, 9451-9460.	1.8	2
206	Characteristics of Block Copolymers of Methyl Oxirane and Oxirane Derivatives of 2-Ethylhexanol as Obtained with KOH and Dimetalcyanide Type Catalyst. Tenside, Surfactants, Detergents, 2016, 53, 259-264.	0.5	2
207	Alkoxylation for Surfactant Productions: Toward the Continuous Reactors. Frontiers in Chemical Engineering, 2020, 2, .	1.3	2
208	A new perspective on vegetable oil epoxidation modeling: Reaction and mass transfer in a liquid–liquid–solid system. AICHE Journal, 0, , .	1.8	2
209	Revealing the role of stabilizers in H2O2 for the peroxyformic acid synthesis and decomposition kinetics. Chemical Engineering Science, 2022, 251, 117488.	1.9	2
210	Heterogeneous Photodegradation for the Abatement of Recalcitrant COD in Synthetic Tanning Wastewater. ChemEngineering, 2022, 6, 25.	1.0	2
211	The radical polymerization of C12–C18 alkylmethacrylates in semibatch conditions. Journal of Applied Polymer Science, 1995, 56, 1141-1149.	1.3	1
212	Vapour pressures of fluorocarbons in polyols, polyamines and polycarboxyls. Journal of Fluorine Chemistry, 1996, 78, 167-175.	0.9	1
213	Kinetic and catalytic aspects in the synthesis of polyethylene terephtalate (PET), also through the use of model molecules. Studies in Surface Science and Catalysis, 1999, 122, 431-434.	1.5	1
214	Kinetics of Ethoxylation and Propoxylation of Ethylene Glycol Catalyzed by KOH Industrial & Engineering Chemistry Research, 2002, 41, 6772-6772.	1.8	1
215	Chemical Reaction Engineering as a Bridge Between Nano and Macro World. Frontiers in Chemical Engineering, 2019, 1, .	1.3	1
216	Intraparticle Model for Non-Uniform Active Phase Distribution Catalysts in a Batch Reactor. ChemEngineering, 2021, 5, 38.	1.0	1

#	Article	IF	CITATIONS
217	A simple device to test biodiesel process intensification. , 2011, 50, 1085-1085.		1
218	Production of Ethylene Oxide/Propylene Oxide Block Copolymers. Surfactant Science, 2008, , 253-270.	0.0	1
219	Deactivation of the palladium catalyst in the hydrogenation of 2-ethyl-5,6,7,8-tetrahydroanthraquinone. Studies in Surface Science and Catalysis, 1994, , 597-602.	1.5	0
220	The Performance Comparison Of Branched Methyl Stearate Ethoxylate and Linear Methyl Stearate Ethoxylate. Tenside, Surfactants, Detergents, 2019, 56, 327-332.	0.5	0
221	Preface to CAMURE-11 & ISMR-10 Special Issue. Industrial & Engineering Chemistry Research, 2021, 60, 16545-16546.	1.8	0